Neural Architecture Search Based on a Multi-Objective Evolutionary Algorithm With Probability Stack

计算机科学 人工神经网络 人工智能 渡线 进化算法 遗传算法 进化计算 深度学习 邻接表 机器学习 算法
作者
Yu Xue,Chen Chen,Adam Słowik
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 778-786 被引量:36
标识
DOI:10.1109/tevc.2023.3252612
摘要

With the emergence of deep neural networks, many research fields, such as image classification, object detection, speech recognition, natural language processing, machine translation, and automatic driving, have made major breakthroughs in technology and the research achievements have been successfully applied in many real-life applications. Combining evolutionary computation and neural architecture search (NAS) is an important approach to improve the performance of deep neural networks. Usually, the related researchers only focus on precision. Thus, the searched neural architectures always perform poorly in the other indexes such as time cost. In this article, a multi-objective evolutionary algorithm with a probability stack (MOEA-PS) is proposed for NAS, which considers the two objects of precision and time consumption. MOEA-PS uses an adjacency list to represent the internal structure of deep neural networks. Besides, a unique mechanism is introduced into the multi-objective genetic algorithm to guide the process of crossover and mutation when generating offspring. Furthermore, the structure blocks are stacked using a proxy model to generate deep neural networks. The results of the experiments on Cifar-10 and Cifar-100 demonstrate that the proposed algorithm has a similar error rate compared with the most advanced NAS algorithms, but the time cost is lower. Finally, the network structure searched on Cifar-10 is transferred directly to the ImageNet dataset, which can achieve 73.6% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haoran_man发布了新的文献求助10
2秒前
3秒前
朴素的寒荷完成签到,获得积分20
4秒前
橘子味的北冰洋完成签到 ,获得积分10
4秒前
传奇3应助lvsehx采纳,获得10
4秒前
5秒前
www完成签到,获得积分10
5秒前
7秒前
香蕉觅云应助yanziwu94采纳,获得10
7秒前
Survivor完成签到,获得积分10
8秒前
张蓓蓓发布了新的文献求助10
8秒前
Zxffei完成签到,获得积分10
9秒前
9秒前
14秒前
停停走走发布了新的文献求助10
16秒前
老金金完成签到 ,获得积分10
18秒前
yanziwu94发布了新的文献求助10
19秒前
19秒前
haoran_man完成签到,获得积分20
19秒前
CipherSage应助停停走走采纳,获得10
22秒前
sci完成签到,获得积分10
23秒前
24秒前
24秒前
木冉完成签到 ,获得积分10
24秒前
外向的沛柔关注了科研通微信公众号
26秒前
停停走走完成签到,获得积分20
28秒前
小二郎应助1111采纳,获得20
31秒前
叶子完成签到,获得积分10
31秒前
赵银志发布了新的文献求助10
31秒前
37秒前
母单花完成签到 ,获得积分10
40秒前
木穹完成签到,获得积分10
43秒前
归雁发布了新的文献求助10
45秒前
青基立项完成签到 ,获得积分10
45秒前
orixero应助阿俊1212采纳,获得10
47秒前
hadfunsix完成签到 ,获得积分10
48秒前
科研通AI5应助飘逸妙柏采纳,获得10
49秒前
1111完成签到 ,获得积分20
49秒前
慕青应助枫叶采纳,获得10
50秒前
阡陌完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751