已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning-based automated sponge cytology for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction: a nationwide, multicohort, prospective study

医学 腺癌 上皮内瘤变 接收机工作特性 细胞学 内窥镜检查 前瞻性队列研究 内科学 胃肠病学 病理 放射科 癌症 前列腺
作者
Ye Gao,Lei Xin,Lin Han,Bin Yao,Tao Zhang,Ai-Jun Zhou,Shu Huang,Jianhua Wang,Yadong Feng,Sheng-Hua Yao,Yan Guo,Tong Dang,Xianmei Meng,Zeng-Zhou Yang,Wan-Qi Jia,Huifang Pang,Tian Xiao-juan,Bin Deng,Junping Wang,Wen-Chuan Fan
出处
期刊:The Lancet Gastroenterology & Hepatology [Elsevier]
卷期号:8 (5): 432-445 被引量:41
标识
DOI:10.1016/s2468-1253(23)00004-3
摘要

Oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction have a dismal prognosis, and early detection is key to reduce mortality. However, early detection depends on upper gastrointestinal endoscopy, which is not feasible to implement at a population level. We aimed to develop and validate a fully automated machine learning-based prediction tool integrating a minimally invasive sponge cytology test and epidemiological risk factors for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction before endoscopy.For this multicohort prospective study, we enrolled participants aged 40-75 years undergoing upper gastrointestinal endoscopy screening at 39 tertiary or secondary hospitals in China for model training and testing, and included community-based screening participants for further validation. All participants underwent questionnaire surveys, sponge cytology testing, and endoscopy in a sequential manner. We trained machine learning models to predict a composite outcome of high-grade lesions, defined as histology-confirmed high-grade intraepithelial neoplasia and carcinoma of the oesophagus and oesophagogastric junction. The predictive features included 105 cytological and 15 epidemiological features. Model performance was primarily measured with the area under the receiver operating characteristic curve (AUROC) and average precision. The performance measures for cytologists with AI assistance was also assessed.Between Jan 1, 2021, and June 30, 2022, 17 498 eligible participants were involved in model training and validation. In the testing set, the AUROC of the final model was 0·960 (95% CI 0·937 to 0·977) and the average precision was 0·482 (0·470 to 0·494). The model achieved similar performance to consensus of cytologists with AI assistance (AUROC 0·955 [95% CI 0·933 to 0·975]; p=0·749; difference 0·005, 95% CI, -0·011 to 0·020). If the model-defined moderate-risk and high-risk groups were referred for endoscopy, the sensitivity was 94·5% (95% CI 88·8 to 97·5), specificity was 91·9% (91·2 to 92·5), and the predictive positive value was 18·4% (15·6 to 21·6), and 90·3% of endoscopies could be avoided. Further validation in community-based screening showed that the AUROC of the model was 0·964 (95% CI 0·920 to 0·990), and 92·8% of endoscopies could be avoided after risk stratification.We developed a prediction tool with favourable performance for screening of oesophageal squamous cell carcinoma and adenocarcinoma of the oesophagogastric junction. This approach could prevent the need for endoscopy screening in many low-risk individuals and ensure resource optimisation by prioritising high-risk individuals.Science and Technology Commission of Shanghai Municipality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助TK采纳,获得10
1秒前
3秒前
深情安青应助哈哈哈哈哈采纳,获得10
4秒前
莫非完成签到,获得积分10
5秒前
ZJX完成签到,获得积分10
5秒前
Valiant完成签到,获得积分10
6秒前
genius完成签到 ,获得积分10
6秒前
lin完成签到 ,获得积分10
7秒前
linshaoyu完成签到,获得积分10
8秒前
8秒前
害羞静柏发布了新的文献求助10
9秒前
Fiona发布了新的文献求助10
12秒前
科目三应助tianxiemouzi采纳,获得10
13秒前
大个应助B4采纳,获得10
14秒前
14秒前
JJI完成签到,获得积分20
15秒前
kk完成签到,获得积分10
18秒前
18秒前
害羞静柏完成签到,获得积分10
19秒前
hahahan完成签到 ,获得积分10
20秒前
Olivahorse发布了新的文献求助80
21秒前
怕黑行恶发布了新的文献求助10
21秒前
Hello应助只只采纳,获得10
22秒前
JacekYu完成签到 ,获得积分0
24秒前
陶醉的钢笔完成签到 ,获得积分0
24秒前
ll完成签到 ,获得积分10
24秒前
小马完成签到,获得积分10
25秒前
上官老师完成签到 ,获得积分10
26秒前
林莹发布了新的文献求助30
27秒前
今天放假了吗完成签到,获得积分10
28秒前
怕黑的跳跳糖完成签到,获得积分10
29秒前
丘比特应助橘子采纳,获得10
30秒前
30秒前
摸鱼人完成签到,获得积分10
30秒前
30秒前
哇咔咔完成签到 ,获得积分10
30秒前
共享精神应助邹随阴采纳,获得10
31秒前
机灵花生完成签到,获得积分10
31秒前
TK完成签到 ,获得积分10
33秒前
云霞完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642