CYP2C18: the orphan in the CYP2C family

药物基因组学 医学 图书馆学 药理学 计算机科学
作者
Pablo Zubiaur,Andrea Gaedigk
出处
期刊:Pharmacogenomics [Future Medicine]
卷期号:23 (17): 913-916 被引量:4
标识
DOI:10.2217/pgs-2022-0142
摘要

PharmacogenomicsVol. 23, No. 17 EditorialCYP2C18: the orphan in the CYP2C familyPablo Zubiaur & Andrea GaedigkPablo Zubiaur https://orcid.org/0000-0002-6150-4320Department of Clinical Pharmacology, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Hospital Universitario de La Princesa, Universidad Autónoma de Madrid (UAM), Madrid, SpainDivision of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USASearch for more papers by this author & Andrea Gaedigk *Author for correspondence: E-mail Address: agaedigk@cmh.eduhttps://orcid.org/0000-0001-6968-1893Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy Research Institute (CMRI), Kansas City, MO, USASchool of Medicine, University of Missouri–Kansas City, Kansas City, MO, USASearch for more papers by this authorPublished Online:4 Nov 2022https://doi.org/10.2217/pgs-2022-0142AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: CYP2C18CYP2C19pharmacogeneticsReferences1. https://cpicpgx.org/guidelines/Google Scholar2. Whirl-Carrillo M, Huddart R, Gong L et al. An evidence-based framework for evaluating pharmacogenomics knowledge for personalized medicine. Clin Pharmacol. Ther. 110(3), 563–572 (2021).Crossref, Medline, Google Scholar3. www.pharmgkb.org/pathway/PA145011113Google Scholar4. www.pharmgkb.org/pathway/PA153627759Google Scholar5. www.pharmgkb.org/pathway/PA152530846Google Scholar6. www.pharmgkb.org/pathway/PA145011113Google Scholar7. www.pharmgkb.org/pathway/PA166163705Google Scholar8. www.pharmgkb.org/pathway/PA166247041Google Scholar9. www.pharmgkb.org/pathway/PA166160830Google Scholar10. Dinh JC, Pearce RE, Van Haandel L, Gaedigk A, Leeder JS. Characterization of atomoxetine biotransformation and implications for development of PBPK models for dose individualization in children. Drug Metab. Dispos. 44(7), 1070–1079 (2016).Crossref, Medline, CAS, Google Scholar11. Läpple F, von Richter O, Fromm MF et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 13(9), 565–575 (2003).Crossref, Medline, Google Scholar12. Gaedigk A, Casey ST, Whirl-Carrillo M, Miller NA, Klein TE. Pharmacogene Variation Consortium: a global resource and repository for pharmacogene variation. Clin. Pharmacol. Ther. 110(3), 542–545 (2021).Crossref, Medline, Google Scholar13. Gaedigk A, Ingelman-Sundberg M, Miller NA et al. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the Human Cytochrome P450 (CYP) Allele Nomenclature Database. Clin. Pharmacol. Ther. 103(3), 399–401 (2018).Crossref, Medline, CAS, Google Scholar14. Sangkuhl K, Claudio-Campos K, Cavallari LH et al. PharmVar GeneFocus: CYP2C9. Clin. Pharmacol. Ther. 110(3), 662–676 (2021).Crossref, Medline, CAS, Google Scholar15. Botton MR, Whirl-Carrillo M, Del Tredici AL et al. PharmVar GeneFocus: CYP2C19. Clin. Pharmacol. Ther. 109(2), 352–366 (2021).Crossref, Medline, Google Scholar16. Gaedigk A, Boone EC, Scherer SE et al. CYP2C8, CYP2C9, and CYP2C19 characterization using next-generation sequencing and haplotype analysis: a GeT-RM collaborative project. J. Mol. Diagn. 24(4), 337–350 (2022).Crossref, Medline, CAS, Google Scholar17. Bråten LS, Haslemo T, Jukic MM et al. A novel CYP2C haplotype associated with ultrarapid metabolism of escitalopram. Clin Pharmacol. Ther. 110(3), 786–793 (2021).Crossref, Medline, Google Scholar18. Kee PS, Maggo SDS, Kennedy MA et al. Omeprazole treatment failure in gastroesophageal reflux disease and genetic variation at the CYP2C locus. Front. Genet. 13, 869160 (2022).Crossref, Medline, CAS, Google Scholar19. www.ebi.ac.uk/Tools/psa/emboss_stretcher/Google Scholar20. www.proteinatlas.org/Google Scholar21. www.gtexportal.org/home/Google Scholar22. Uhlén M, Fagerberg L, Hallström BM et al. Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015).Crossref, Medline, Google Scholar23. Wenzel C, Drozdzik M, Oswald S. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1180, 122891 (2021).Crossref, Medline, CAS, Google Scholar24. Takayama K, Ito K, Matsui A et al. In vivo gene expression profile of human intestinal epithelial cells: from the viewpoint of drug metabolism and pharmacokinetics. Drug Metab. Dispos. 49(3), 221–232 (2021).Crossref, Medline, CAS, Google Scholar25. Miyauchi E, Tachikawa M, Declèves X et al. Quantitative atlas of cytochrome P450, UDP-glucuronosyltransferase, and transporter proteins in jejunum of morbidly obese subjects. Mol. Pharm. 13(8), 2631–2640 (2016).Crossref, Medline, CAS, Google Scholar26. Wu Y, Chitranshi P, Loukotková L et al. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Arch. Toxicol. 91(6), 2405–2423 (2017).Crossref, Medline, CAS, Google Scholar27. Fang WB, Lofwall MR, Walsh SL, Moody DE. Determination of oxycodone, noroxycodone and oxymorphone by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry in human matrices: in vivo and in vitro applications. J. Anal. Toxicol. 37(6), 337–344 (2013).Crossref, Medline, Google Scholar28. Yamane M, Kawashima K, Yamaguchi K et al. In vitro profiling of the metabolism and drug–drug interaction of tofogliflozin, a potent and highly specific sodium-glucose co-transporter 2 inhibitor, using human liver microsomes, human hepatocytes, and recombinant human CYP. Xenobiotica 45(3), 230–238 (2015).Crossref, Medline, CAS, Google Scholar29. Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem. Pharmacol. 153, 196–204 (2018).Crossref, Medline, CAS, Google Scholar30. Maagdenberg H, Bierings MB, van Ommen CH et al. The pediatric acenocoumarol dosing algorithm: the Children Anticoagulation and Pharmacogenetics Study. J. Thromb. Haemost. 16(9), 1732–1742 (2018).Crossref, Medline, CAS, Google Scholar31. Collins JM, Wang D. Regulation of CYP3A4 and CYP3A5 by a lncRNA: a potential underlying mechanism explaining the association between CYP3A4*1G and CYP3A metabolism. Pharmacogenet. Genomics 32(1), 16–23 (2022).Crossref, Medline, CAS, Google Scholar32. Tang X, Chen S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr. Drug Metab. 16(2), 86–96 (2015).Crossref, Medline, CAS, Google Scholar33. Yu D, Green B, Tolleson WH et al. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem. Pharmacol. 98(1), 215–223 (2015).Crossref, Medline, CAS, Google Scholar34. Zhang S-Y, Surapureddi S, Coulter S, Ferguson SS, Goldstein JA. Human CYP2C8 is post-transcriptionally regulated by microRNAs 103 and 107 in human liver. Mol. Pharmacol. 82(3), 529–540 (2012).Crossref, Medline, CAS, Google ScholarFiguresReferencesRelatedDetails Vol. 23, No. 17 STAY CONNECTED Metrics Downloaded 110 times History Received 23 September 2022 Accepted 26 September 2022 Published online 4 November 2022 Published in print November 2022 Information© 2022 Future Medicine LtdKeywordsCYP2C18CYP2C19pharmacogeneticsFinancial & competing interests disclosureP Zubiaur is supported by Universidad Autónoma de Madrid, Margarita Salas contract, grants for the requalification of the Spanish university system. A Gaedigk is the director of the Pharmacogene Variation (PharmVar) Consortium and CPIC member. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amberzyc完成签到,获得积分10
1秒前
1秒前
复杂若男完成签到,获得积分10
2秒前
zlx完成签到,获得积分10
2秒前
科2研7通应助wdccx采纳,获得30
2秒前
沈客卿完成签到,获得积分10
2秒前
英俊的铭应助子啼当归采纳,获得10
3秒前
风中老三完成签到,获得积分10
3秒前
今后应助yx采纳,获得10
3秒前
4秒前
健壮荠完成签到,获得积分10
4秒前
有一颗卤蛋完成签到,获得积分10
4秒前
ding应助amberzyc采纳,获得10
5秒前
5秒前
忐忑的远山完成签到,获得积分10
5秒前
明亮的翠风完成签到,获得积分10
5秒前
6秒前
6秒前
苗广山完成签到,获得积分10
6秒前
6秒前
缥缈的初阳完成签到,获得积分10
7秒前
机灵柚子应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
天天快乐应助雪球1248采纳,获得10
8秒前
大模型应助科研通管家采纳,获得20
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
卡卡西应助加百莉采纳,获得10
9秒前
gqb完成签到,获得积分10
9秒前
9秒前
笑点低一手完成签到,获得积分10
9秒前
雪白元蝶完成签到,获得积分10
9秒前
SciGPT应助叶立军采纳,获得10
10秒前
小土豆发布了新的文献求助10
10秒前
Lawrence完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642