Multi-objective reinforcement learning framework for dynamic flexible job shop scheduling problem with uncertain events

强化学习 计算机科学 动态优先级调度 作业车间调度 单调速率调度 流水车间调度 公平份额计划 数学优化 调度(生产过程) 两级调度 机器学习 人工智能 数学 地铁列车时刻表 操作系统
作者
Hao Wang,Junfu Cheng,Chang Liu,Yuanyuan Zhang,Shunfang Hu,Liangyin Chen
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:131: 109717-109717 被引量:54
标识
DOI:10.1016/j.asoc.2022.109717
摘要

The economic benefits for manufacturing companies will be influenced by how it handles potential dynamic events and performs multi-objective real-time scheduling for existing dynamic events. Based on these, we propose a new dynamic multi-objective flexible job shop scheduling problem (DMFJSP) to simulate realistic production environment. Six dynamic events are involved in the problem including job insertion, job cancellation, job operation modification, machine addition, machine tool replacement and machine breakdown. As well as three objectives of longest job processing time (makespan), average machine utilization and average job processing delay rate with a set of constraints are also raised in the study. Then this research designs a novel dynamic multi-objective scheduling algorithm based on deep reinforcement learning. The algorithm uses two deep Q-learning networks and a real-time processing framework to process each dynamic event and generate complete scheduling scheme. In addition, an improved local search algorithm is adopted to further optimize the scheduling results and the idea of combination is used to make the scheduling rules more comprehensive. Experiments on 27 instances show the superiority and stability of our approach compared to each proposed combined rule, well-known scheduling rules and standard deep Q-learning based algorithms. Compared to the current optimal deep Q-learning method, the maximum performance improvement for our three objectives are approximately 57%, 164% and 28%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
随风完成签到,获得积分0
1秒前
烟花应助KKLD采纳,获得10
1秒前
orixero应助威仔采纳,获得10
1秒前
scxl2000完成签到,获得积分10
1秒前
yangyang完成签到,获得积分10
2秒前
baolong完成签到,获得积分10
2秒前
释棱完成签到 ,获得积分10
2秒前
胡周瑜完成签到 ,获得积分20
2秒前
顾矜应助小田心采纳,获得10
2秒前
等待日记本完成签到 ,获得积分10
3秒前
子枫发布了新的文献求助10
3秒前
YUU完成签到,获得积分10
3秒前
豆豆发布了新的文献求助10
3秒前
鱼维尼完成签到,获得积分10
3秒前
hiliang完成签到,获得积分10
3秒前
梅子黄时雨完成签到,获得积分10
4秒前
hoshi1018完成签到,获得积分10
4秒前
ytsong完成签到,获得积分10
4秒前
如意怡完成签到,获得积分10
4秒前
sun发布了新的文献求助10
5秒前
爆米花应助yangyang采纳,获得10
5秒前
ZX完成签到,获得积分10
6秒前
我是老大应助Biohacking采纳,获得10
6秒前
邬不污完成签到,获得积分10
6秒前
小高同学发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Queen完成签到,获得积分10
8秒前
星空之下ssr完成签到,获得积分10
8秒前
动听的谷秋完成签到 ,获得积分10
9秒前
fin完成签到,获得积分10
9秒前
落叶捎来讯息完成签到 ,获得积分10
10秒前
Zachary完成签到,获得积分10
10秒前
Hello应助我是雅婷采纳,获得10
10秒前
子枫完成签到,获得积分10
10秒前
10秒前
pure完成签到,获得积分10
10秒前
蓝桉完成签到 ,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642