Triggering Rainfall of Large-Scale Landslides in Taiwan: Statistical Analysis of Satellite Imagery for Early Warning Systems

山崩 台风 比例(比率) 环境科学 预警系统 重采样 线性回归 气象学 地质学 统计 地图学 地理 计算机科学 数学 地震学 电信
作者
Tsai-Tsung Tsai,Yuan-Jung Tsai,Chjeng‐Lun Shieh,John Hsiao-Chung Wang
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:14 (21): 3358-3358 被引量:4
标识
DOI:10.3390/w14213358
摘要

Typhoon Morakot had a serious impact on Taiwan, especially the uncommon type of landslide called large-scale landslide (LSL), not many in number but serious in effect, the origin of which the study induced. To establish a specific relationship between LSL and triggering rainfall for future applications of LSL early warning predictions, relevant cases from satellite imagery, along with field investigation data, major event reports, and seismic data from 2004 to 2016, were collected. All collected cases are distributed around the mountainous area in Taiwan, and a total of 107 cases which were mainly distributed in the southern part of the mountainous area were finally selected, including 28 occurrence-time-known cases and 79 occurrence-time-unknown cases. In addition, 149 potential areas identified by the Soil and Water Conservation Bureau (SWCB) were used for improving bounding estimates. Based on the concept of safety factor, two dimensionless quantities, rainfall/landslide depth (R/D) and friction angle/slope (ϕ/θ), were analyzed by linear regression. In addition, D was assumed to be nonlinearly dependent on R, θ, and ϕ, and the parameter uncertainties were evaluated by the resampling with bootstrap method. Based on the currently obtained data, there were 8% Type-I errors in the results of the linear regression analysis, and 1% Type-II errors in the results of the nonlinear regression analysis. Through the comparison of statistical indicators, the results of nonlinear regression analysis have a better correlation trend. Based on the needs of early warning operations, more conservative indicators can reduce the risks faced by management operations. Therefore, according to the results of this study, the lower boundary values from nonlinear analysis could be used as the LSL early warning management settings. Incorporated with real-time rainfall forecasts, the variation of statistical indicators will provide the trend information dynamically, and will help to increase the response time for relevant evacuation operations, that will be welcome for the further extended applications to guide the evacuation operations of early warning systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助烂漫的白昼采纳,获得10
1秒前
1秒前
汉堡包应助qiuli采纳,获得10
1秒前
3秒前
Jasper应助Dan采纳,获得10
3秒前
漫梦qiqi发布了新的文献求助10
4秒前
4秒前
东瓜山完成签到 ,获得积分10
5秒前
坦率的匪应助只想发SCI采纳,获得20
5秒前
6秒前
所所应助WWW采纳,获得10
6秒前
姜露萍完成签到,获得积分10
6秒前
英姑应助mouse0821采纳,获得10
7秒前
于小文发布了新的文献求助20
7秒前
8秒前
BINGBING发布了新的文献求助10
9秒前
9秒前
舒心乘风发布了新的文献求助10
10秒前
10秒前
852应助雪白的威采纳,获得10
10秒前
溶脂发布了新的文献求助10
10秒前
正直凌文发布了新的文献求助30
11秒前
植物代谢发布了新的文献求助30
11秒前
ccyoung发布了新的文献求助10
11秒前
壮的给壮的的求助进行了留言
11秒前
打打应助嘎嘎的鸡神采纳,获得10
12秒前
pluto应助如虎添亿采纳,获得10
12秒前
12秒前
文艺不凡发布了新的文献求助10
13秒前
漫梦qiqi完成签到,获得积分10
13秒前
13秒前
14秒前
研友_WnqWp8发布了新的文献求助10
14秒前
runtang发布了新的文献求助30
16秒前
Dan发布了新的文献求助10
16秒前
专注的觅云完成签到 ,获得积分10
16秒前
li完成签到 ,获得积分10
16秒前
Wind应助风趣怜烟采纳,获得10
17秒前
17秒前
呆萌大象发布了新的文献求助10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181479
求助须知:如何正确求助?哪些是违规求助? 3717481
关于积分的说明 11718758
捐赠科研通 3397507
什么是DOI,文献DOI怎么找? 1864120
邀请新用户注册赠送积分活动 922114
科研通“疑难数据库(出版商)”最低求助积分说明 833820