Research on aging mechanism and state of health prediction in lithium batteries

健康状况 内阻 电池(电) 锂(药物) 可靠性工程 锂离子电池 机制(生物学) 工作(物理) 可靠性(半导体) 汽车工程 过程(计算) 计算机科学 功率(物理) 工程类 机械工程 医学 内分泌学 哲学 物理 操作系统 认识论 量子力学
作者
Jing Zeng,Sifeng Liu
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108274-108274 被引量:67
标识
DOI:10.1016/j.est.2023.108274
摘要

In recent years, in order to reduce vehicle exhaust emissions and alleviate the energy crisis, new energy vehicles have been rapidly developed. With the improvement of the performance and driving range of electric vehicles, the power and capacity of lithium batteries are increasing, and their safety and reliability are becoming increasingly important. The micro fuzziness, evolution complexity and actual variability of lithium battery performance make it difficult to characterize its aging, and the estimation deviation of its state of health (SOH) is large. It is urgent to deeply explore the mechanism of internal capacity decline and establish a reasonable mathematical model to realize the quantitative evaluation of microscopic reaction process. In this work, the aging factors of lithium batteries are classified, and the influence of positive and negative aging of battery on lithium battery is analyzed. The aging mechanism of lithium battery is divided into the loss of active lithium ion (LLI), the loss of active material (LAM) and the increase of internal resistance. The failure mechanism of positive and negative electrode materials, electrolyte and current collectors during battery aging is systematically analyzed. Considering the actual operating conditions of lithium battery, the external aging factors are clarified. The main mathematical models of capacity decline and SOH prediction are summarized. This work can provide reference for the construction of aging model, SOH prediction model, and provide theoretical basis for the design of lithium battery management system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jqx完成签到 ,获得积分20
1秒前
1秒前
PDL_发布了新的文献求助10
2秒前
sherry221发布了新的文献求助10
3秒前
无花果应助zyc采纳,获得10
3秒前
4秒前
星空物语完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
淋湿的雨完成签到 ,获得积分10
8秒前
8秒前
大个应助fox采纳,获得10
8秒前
8秒前
9秒前
李爱国应助小田心采纳,获得10
9秒前
10秒前
Ava应助zora采纳,获得10
10秒前
保安队长发布了新的文献求助10
10秒前
sunrise发布了新的文献求助10
10秒前
qiu发布了新的文献求助10
11秒前
典雅雁梅完成签到,获得积分10
12秒前
小马甲应助月亮采纳,获得10
13秒前
111发布了新的文献求助10
13秒前
jqx关注了科研通微信公众号
13秒前
lqtnb发布了新的文献求助10
13秒前
14秒前
捕猎者hhr发布了新的文献求助10
14秒前
科研通AI6应助温婉的荷花采纳,获得10
14秒前
烟花应助llb采纳,获得10
15秒前
闹闹啊完成签到 ,获得积分10
17秒前
sc完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
qianlu完成签到 ,获得积分10
18秒前
shiwenhe关注了科研通微信公众号
19秒前
19秒前
捕猎者hhr完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849828
求助须知:如何正确求助?哪些是违规求助? 4149215
关于积分的说明 12852851
捐赠科研通 3896596
什么是DOI,文献DOI怎么找? 2141803
邀请新用户注册赠送积分活动 1161232
关于科研通互助平台的介绍 1061308