清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Comprehensive Review of the Application of Machine Learning in Fabrication and Implementation of Photovoltaic Systems

光伏系统 计算机科学 可再生能源 尺寸 制作 太阳能 领域(数学) 可靠性工程 人工智能 机器学习 电气工程 工程类 艺术 替代医学 纯数学 视觉艺术 病理 医学 数学
作者
Srabanti Datta,Anik Baul,Gobinda Chandra Sarker,Pintu Kumar Sadhu,Deidra Hodges
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 77750-77778 被引量:50
标识
DOI:10.1109/access.2023.3298542
摘要

Solar energy is a promising source of renewable energy, but its low efficiency, instability, and high manufacturing costs remain a big challenge. Recently, machine learning (ML) techniques have gained attention in the photovoltaic (PV) sector because of advances in computer power, tools, and data creation. The existing ML techniques used for fabrication and the different operational procedures of the PV sector have shown very impressive results with a higher degree of accuracy and precision. While previous studies have discussed ML techniques for PV fabrication or operational procedures, there is a lack of end-to-end research that covers the entire process from fabrication to implementation. In this paper, we present a comprehensive review of the application of ML in the field of solar energy, focusing on the development of new materials, enhancement of solar cell efficiency, implementation, and integration with the system, including fault detection, sizing, control, forecasting, management, and site adaptation. We evaluated more than 100 research articles, a significant proportion of which were published in the past three years. In our study investigating ML implementation in solar cell fabrication, we discovered that the Random Forest (RF), Linear Regression (LR), XGBoost, and Artificial Neural Network (ANN) algorithms are the most commonly employed techniques. Our findings demonstrate that XGBoost exhibits superior performance in optoelectronic prediction, while RF, LR, and ANN algorithms are better suited for predicting electrical parameters. Moreover, our analysis indicates recent ML research in this field explicitly emphasizes perovskite solar cells (PSCs). This work also discusses the challenges, directions, insights, and potential applications of ML for future PV system analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
qiongqiong完成签到 ,获得积分10
6秒前
7秒前
思源应助读书的时候采纳,获得10
13秒前
15秒前
24秒前
33秒前
36秒前
38秒前
43秒前
43秒前
48秒前
52秒前
56秒前
研友_ngqgY8发布了新的文献求助20
57秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
bigtree完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688338
求助须知:如何正确求助?哪些是违规求助? 5065546
关于积分的说明 15193862
捐赠科研通 4846587
什么是DOI,文献DOI怎么找? 2598958
邀请新用户注册赠送积分活动 1551040
关于科研通互助平台的介绍 1509667