亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of surrogate models for evaluating energy transfer quality of high-speed railway pantograph-catenary system using physics-based model and machine learning

悬链线 替代模型 受电弓 火车 能量(信号处理) 计算机科学 人工神经网络 工程类 树(集合论) 人工智能 模拟 机器学习 数学 机械工程 地理 数学分析 统计 结构工程 地图学
作者
Guizao Huang,Guangning Wu,Zefeng Yang,Xing Chen,Wenfu Wei
出处
期刊:Applied Energy [Elsevier BV]
卷期号:333: 120608-120608 被引量:3
标识
DOI:10.1016/j.apenergy.2022.120608
摘要

High-speed railway pantograph-catenary system is the only energy transfer pathway to drive a train operation. Energy transfer quality deteriorates with the increasing train speed and harsh service environment, thereby quickly and accurately evaluating the energy transfer quality is very important to guarantee the normal operation of a train. In this study, firstly, the physics-based model to simulate the dynamic interaction of pantograph-catenary system is established and validated. Eleven input parameters involve the essential line design and train operation parameters, and the output parameters that are crucially responsible for energy transfer quality are obtained by feature extraction. Secondly, a sampling strategy is employed to construct the input sampling points, based on which the outputs are computed via physics-based model, then combining them the dataset is obtained. Thirdly, five tree-based classification surrogate models are developed and compared to assess the level of energy transfer quality. Finally, eight regression surrogate models are developed in replacing physics-based model to evaluate the essential values of energy transfer quality. It is found that the gradient boosting decision tree (GBDT)-based surrogate model is the optimal classification model and the multi-layer feed-forward deep neural network (MLF-DNN)-based surrogate model for the optimal regression model. The two surrogate models are expected to quickly find the optimal design parameters and improve the operation control of trains of high-speed railway for the purpose of enhancing the energy transfer quality if coupled with optimization procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Invincible完成签到 ,获得积分10
2秒前
Alex完成签到,获得积分10
2秒前
葡萄味的果茶完成签到 ,获得积分10
2秒前
知足的憨人丫丫完成签到,获得积分10
2秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
anin应助科研通管家采纳,获得100
6秒前
mmyhn应助科研通管家采纳,获得20
6秒前
andrele应助科研通管家采纳,获得10
6秒前
852应助zrm采纳,获得10
7秒前
9秒前
乐乐应助郭大侠采纳,获得10
10秒前
11秒前
伶俐的金连完成签到 ,获得积分10
13秒前
15秒前
温柔晓刚完成签到,获得积分10
15秒前
知足的憨人*-*完成签到,获得积分10
16秒前
七慕凉发布了新的文献求助10
16秒前
17秒前
郑旭辉发布了新的文献求助10
19秒前
丘比特应助风中翠琴采纳,获得10
21秒前
研友_ZrllXL发布了新的文献求助10
22秒前
DreamRunner0410完成签到 ,获得积分10
22秒前
23秒前
靓丽紫真完成签到 ,获得积分10
25秒前
26秒前
26秒前
Sherling完成签到,获得积分10
27秒前
axlyjia发布了新的文献求助10
30秒前
zrm发布了新的文献求助10
31秒前
32秒前
33秒前
Anyemzl完成签到,获得积分10
34秒前
36秒前
Sherling发布了新的文献求助10
36秒前
lesyeuxdexx完成签到 ,获得积分10
38秒前
39秒前
孤独尔白完成签到,获得积分10
43秒前
liancheng完成签到,获得积分10
43秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824880
求助须知:如何正确求助?哪些是违规求助? 3367298
关于积分的说明 10444910
捐赠科研通 3086493
什么是DOI,文献DOI怎么找? 1698084
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848