Development of surrogate models for evaluating energy transfer quality of high-speed railway pantograph-catenary system using physics-based model and machine learning

悬链线 替代模型 受电弓 火车 能量(信号处理) 计算机科学 人工神经网络 工程类 树(集合论) 人工智能 模拟 机器学习 数学 机械工程 地理 数学分析 统计 结构工程 地图学
作者
Guizao Huang,Guangning Wu,Zefeng Yang,Xing Chen,Wenfu Wei
出处
期刊:Applied Energy [Elsevier BV]
卷期号:333: 120608-120608 被引量:3
标识
DOI:10.1016/j.apenergy.2022.120608
摘要

High-speed railway pantograph-catenary system is the only energy transfer pathway to drive a train operation. Energy transfer quality deteriorates with the increasing train speed and harsh service environment, thereby quickly and accurately evaluating the energy transfer quality is very important to guarantee the normal operation of a train. In this study, firstly, the physics-based model to simulate the dynamic interaction of pantograph-catenary system is established and validated. Eleven input parameters involve the essential line design and train operation parameters, and the output parameters that are crucially responsible for energy transfer quality are obtained by feature extraction. Secondly, a sampling strategy is employed to construct the input sampling points, based on which the outputs are computed via physics-based model, then combining them the dataset is obtained. Thirdly, five tree-based classification surrogate models are developed and compared to assess the level of energy transfer quality. Finally, eight regression surrogate models are developed in replacing physics-based model to evaluate the essential values of energy transfer quality. It is found that the gradient boosting decision tree (GBDT)-based surrogate model is the optimal classification model and the multi-layer feed-forward deep neural network (MLF-DNN)-based surrogate model for the optimal regression model. The two surrogate models are expected to quickly find the optimal design parameters and improve the operation control of trains of high-speed railway for the purpose of enhancing the energy transfer quality if coupled with optimization procedure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YanK发布了新的文献求助10
1秒前
1秒前
1秒前
poorzz发布了新的文献求助10
1秒前
Owen应助peekaboo采纳,获得10
2秒前
yiyiyini完成签到,获得积分10
2秒前
科目三应助只是虚瘦采纳,获得10
2秒前
白日梦发布了新的文献求助10
3秒前
水何澹澹完成签到,获得积分0
3秒前
玛卡巴卡完成签到,获得积分10
3秒前
4秒前
丫丫发布了新的文献求助10
4秒前
xiongyong发布了新的文献求助10
5秒前
5秒前
简单的依珊完成签到,获得积分10
5秒前
qwh完成签到,获得积分20
6秒前
隐形曼青应助哪吒采纳,获得20
7秒前
8秒前
poorzz完成签到,获得积分10
8秒前
run发布了新的文献求助10
9秒前
zsl发布了新的文献求助10
9秒前
万能图书馆应助YanK采纳,获得10
10秒前
白之玉发布了新的文献求助10
11秒前
李伟发布了新的文献求助10
11秒前
Jasper应助丫丫采纳,获得20
14秒前
科研通AI5应助李千澈采纳,获得30
15秒前
安恋雨完成签到 ,获得积分10
16秒前
xiongyong完成签到,获得积分10
16秒前
细腻沛萍发布了新的文献求助10
17秒前
万能图书馆应助白之玉采纳,获得10
20秒前
陈成应助氢氧化钠Li采纳,获得20
20秒前
YanK完成签到,获得积分20
21秒前
飒飒完成签到,获得积分10
22秒前
kk2024完成签到,获得积分10
23秒前
CipherSage应助AlexanderChen采纳,获得10
23秒前
26秒前
HEAUBOOK举报扬帆远航求助涉嫌违规
26秒前
红鲤鱼发布了新的文献求助30
27秒前
fanfan发布了新的文献求助10
29秒前
知性的剑身完成签到,获得积分10
30秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824207
求助须知:如何正确求助?哪些是违规求助? 3366533
关于积分的说明 10441059
捐赠科研通 3085772
什么是DOI,文献DOI怎么找? 1697543
邀请新用户注册赠送积分活动 816398
科研通“疑难数据库(出版商)”最低求助积分说明 769611