DeflickerCycleGAN: Learning to Detect and Remove Flickers in a Single Image

人工智能 闪烁 计算机科学 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 操作系统
作者
Xiaodan Lin,Yangfu Li,Jianqing Zhu,Huanqiang Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 709-720
标识
DOI:10.1109/tip.2022.3231748
摘要

Eliminating the flickers in digital images captured by rolling shutter cameras is a fundamental and important task in computer vision applications. The flickering effect in a single image stems from the mechanism of asynchronous exposure of rolling shutters employed by cameras equipped with CMOS sensors. In an artificial lighting environment, the light intensity captured at different time intervals varies due to the fluctuation of the AC-powered grid, ultimately leading to the flickering artifact in the image. Up to date, there are few studies related to single image deflickering. Further, it is even more challenging to remove flickers without a priori information, e.g., camera parameters or paired images. To address these challenges, we propose an unsupervised framework termed DeflickerCycleGAN, which is trained on unpaired images for end-to-end single image deflickering. Besides the cycle-consistency loss to maintain the similarity of image contents, we meticulously design another two novel loss functions, i.e., gradient loss and flicker loss, to reduce the risk of edge blurring and color distortion. Moreover, we provide a strategy to determine whether an image contains flickers or not without extra training, which leverages an ensemble methodology based on the output of two previously trained markovian discriminators. Extensive experiments on both synthetic and real datasets show that our proposed DeflickerCycleGAN not only achieves excellent performance on flicker removal in a single image but also shows high accuracy and competitive generalization ability on flicker detection, compared to that of a well-trained classifier based on ResNet50.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Accept采纳,获得10
1秒前
李爱国应助xr采纳,获得10
2秒前
3秒前
cdercder应助魏伯安采纳,获得10
4秒前
5秒前
嘻嘻完成签到,获得积分10
5秒前
巴巴bow发布了新的文献求助10
7秒前
Ava应助taozi采纳,获得10
7秒前
crystal119发布了新的文献求助30
8秒前
8秒前
冷酷的可乐完成签到,获得积分10
8秒前
杨怂怂发布了新的文献求助10
9秒前
hu完成签到 ,获得积分20
10秒前
10秒前
晴晴完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
打打应助姜汁采纳,获得10
13秒前
13秒前
无花果应助CQ采纳,获得10
13秒前
完美傲柔完成签到 ,获得积分10
14秒前
Linly发布了新的文献求助10
14秒前
典雅的静发布了新的文献求助10
17秒前
dddddd发布了新的文献求助10
17秒前
Accept完成签到,获得积分10
17秒前
魏伯安完成签到,获得积分10
17秒前
科研通AI5应助ziz采纳,获得10
17秒前
刻苦大叔发布了新的文献求助10
19秒前
英俊的铭应助陈帅帅采纳,获得10
20秒前
科研通AI5应助dddddd采纳,获得10
21秒前
crystal119完成签到,获得积分10
22秒前
23秒前
24秒前
XX完成签到,获得积分10
25秒前
勿念完成签到,获得积分20
26秒前
26秒前
Linly完成签到,获得积分10
26秒前
26秒前
李健应助lt1014采纳,获得10
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Spatio-Temporal Stock Prediction Method Based on End-to-End Learning with Attention Mechanism 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836233
求助须知:如何正确求助?哪些是违规求助? 3378583
关于积分的说明 10504968
捐赠科研通 3098204
什么是DOI,文献DOI怎么找? 1706318
邀请新用户注册赠送积分活动 820958
科研通“疑难数据库(出版商)”最低求助积分说明 772349