亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeflickerCycleGAN: Learning to Detect and Remove Flickers in a Single Image

人工智能 闪烁 计算机科学 计算机视觉 图像处理 模式识别(心理学) 图像(数学) 操作系统
作者
Xiaodan Lin,Yangfu Li,Jianqing Zhu,Huanqiang Zeng
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 709-720 被引量:4
标识
DOI:10.1109/tip.2022.3231748
摘要

Eliminating the flickers in digital images captured by rolling shutter cameras is a fundamental and important task in computer vision applications. The flickering effect in a single image stems from the mechanism of asynchronous exposure of rolling shutters employed by cameras equipped with CMOS sensors. In an artificial lighting environment, the light intensity captured at different time intervals varies due to the fluctuation of the power grid, ultimately resulting in the flickering artifact in the image. Up to date, there are few studies related to single image deflickering. Further, it is even more challenging to remove flickers without a priori information, e.g., camera parameters or paired images. To address these challenges, we propose an unsupervised framework termed DeflickerCycleGAN, which is trained on unpaired images for end-to-end single image deflickering. Besides the cycle-consistency loss to maintain the similarity of image contents, we meticulously design another two novel loss functions, i.e., gradient loss and flicker loss, to reduce the risk of edge blurring and color distortion. Moreover, we provide a strategy to determine whether an image contains flickers or not without extra training, which leverages an ensemble methodology based on the output of two previously trained markovian discriminators. Extensive experiments on both synthetic and real datasets show that our proposed DeflickerCycleGAN not only achieves excellent performance on flicker removal in a single image but also shows high accuracy and competitive generalization ability on flicker detection, compared to that of a well-trained classifier based on ResNet50.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
999完成签到,获得积分10
7秒前
Hello应助Big_Show采纳,获得10
25秒前
balko完成签到,获得积分10
35秒前
TXZ06完成签到,获得积分10
36秒前
32429606完成签到 ,获得积分10
36秒前
uikymh完成签到 ,获得积分0
1分钟前
1分钟前
Big_Show发布了新的文献求助10
1分钟前
Big_Show完成签到,获得积分10
1分钟前
Leah驳回了情怀应助
1分钟前
香蕉觅云应助J157采纳,获得10
1分钟前
arniu2008完成签到,获得积分10
2分钟前
2分钟前
J157发布了新的文献求助10
2分钟前
2分钟前
111发布了新的文献求助30
2分钟前
3分钟前
Leah发布了新的文献求助10
3分钟前
zxcvvbb1001完成签到 ,获得积分10
3分钟前
Leah完成签到,获得积分10
3分钟前
芝士奶盖有点咸完成签到 ,获得积分10
3分钟前
abdo完成签到,获得积分10
3分钟前
4分钟前
Tree完成签到 ,获得积分10
4分钟前
6分钟前
科研通AI6.2应助牟白容采纳,获得10
6分钟前
Da You完成签到 ,获得积分10
6分钟前
6分钟前
苏亚婷发布了新的文献求助10
7分钟前
所所应助苏亚婷采纳,获得10
7分钟前
NexusExplorer应助科研通管家采纳,获得10
8分钟前
桐桐应助科研通管家采纳,获得10
8分钟前
8分钟前
lalkiii发布了新的文献求助10
8分钟前
8分钟前
Dawn发布了新的文献求助10
8分钟前
Dawn完成签到,获得积分10
9分钟前
zsyf完成签到,获得积分10
10分钟前
冷静茉莉完成签到 ,获得积分10
10分钟前
开朗大雁完成签到 ,获得积分10
10分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845464
求助须知:如何正确求助?哪些是违规求助? 6203112
关于积分的说明 15616475
捐赠科研通 4962276
什么是DOI,文献DOI怎么找? 2675388
邀请新用户注册赠送积分活动 1620111
关于科研通互助平台的介绍 1575467