Service recovery by AI or human agents: Do failure and strategy context matter?

背景(考古学) 业务 服务(商务) 过程管理 营销 生物 古生物学
作者
Andreas Fürst,Leonie Trißler,R. Friedrich,Jochen Wirtz
出处
期刊:Journal of Service Management [Emerald Publishing Limited]
标识
DOI:10.1108/josm-04-2024-0190
摘要

Purpose Companies must understand consumer responses to AI-provided services to ensure their effectiveness. This is especially important for critical moments of truth, such as service recovery situations. In this article, we examine consumer preferences for AI versus human service recovery depending on the recovery situation: (1) locus of failure (customer vs company failure); (2) type of symbolic recovery (explanation vs apology); and (3) type of utilitarian recovery (monetary vs functional redress). Design/methodology/approach Three experimental studies were conducted using video-based scenarios that simulated customer chat conversations in financial services and healthcare contexts. Findings Results show that customers favor AI over human agents in cases of customer failures, while they prefer human agents in cases of company failures. Moreover, customers favor AI agents when given an explanation of the failure or monetary redress, whereas they prefer human agents when receiving an apology for the failure or functional redress. Differences in perceived trustworthiness of AI versus human agents, including their perceived competence, benevolence, and integrity, in these contexts are the underlying psychological process that explains our findings. Originality/value This article reveals novel insights into the effectiveness of AI versus human service recovery as a function of service failure and strategy context. Our findings demonstrate the need to align the type of service recovery agent with the specific type of service failure and recovery strategy to maximize customer satisfaction and, in turn, loyalty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鳗鱼饭饭发布了新的文献求助10
1秒前
1秒前
嘟嘟嘟完成签到,获得积分20
1秒前
赘婿应助777采纳,获得10
2秒前
2秒前
Lucas应助饱满小兔子采纳,获得30
2秒前
2秒前
jnn完成签到,获得积分20
2秒前
MoleMed发布了新的文献求助20
3秒前
研友_VZG64n发布了新的文献求助10
4秒前
隐形曼青应助1234567890采纳,获得10
5秒前
放放风完成签到,获得积分10
5秒前
窝趣嘞完成签到 ,获得积分10
5秒前
gu发布了新的文献求助10
5秒前
lw发布了新的文献求助30
5秒前
charry完成签到,获得积分10
5秒前
6秒前
无尽夏完成签到,获得积分10
6秒前
6秒前
胡一鸣发布了新的文献求助10
6秒前
和谐幻柏完成签到,获得积分10
6秒前
Beyond095发布了新的文献求助10
7秒前
爱吃黄豆完成签到,获得积分10
7秒前
洛洛发布了新的文献求助10
7秒前
7秒前
丘比特应助智海瑞采纳,获得10
8秒前
8秒前
WHITE完成签到,获得积分10
9秒前
Jasper应助sdl采纳,获得10
9秒前
杭亦寒发布了新的文献求助50
9秒前
10秒前
晚风发布了新的文献求助30
10秒前
科研通AI2S应助归971003采纳,获得10
10秒前
songxu223完成签到,获得积分20
10秒前
呆呆子完成签到,获得积分10
12秒前
科研废物完成签到,获得积分10
12秒前
聪明帅哥完成签到,获得积分10
12秒前
和谐幻柏发布了新的文献求助10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054