材料科学
兴奋剂
锌
化学工程
氧气
碳纤维
化学
复合数
冶金
光电子学
复合材料
有机化学
工程类
作者
Ramasamy Santhosh Kumar,S. Tamilarasi,A. Manuel Stephan,Ae Rhan Kim,Dong Jin Yoo
标识
DOI:10.1002/smtd.202401515
摘要
Utilizing affordable bifunctional catalysts per strong ORR/OER (oxygen reduction and evolution reactions) ability and superior zinc-air battery performance is yet difficult due to the diverse mechanisms of ORR/OER. This work uses CoNi-MOF (metal-organic framework) as a self-template to yield the CrS doped CoNi/C bifunctional catalyst. Comparable to Pt/C and IrO2 commercial catalysts, the CrS@CoNi/C catalyst exhibits improved electrocatalytic activity toward OER and ORR due to its linked pellet architecture and intact metal sulfide@carbon structure. The CrS@CoNi/C catalyst has the most intriguing ORR/OER performance, with a significantly lower potential and an exceptionally extended cycle duration (E1/2 = 0.72 V and η10 = 260 mV). The CrS@CoNi/C-based aqueous zinc-air battery shows long-term charge-discharge stability (more than 100h/600 cycles) together with significant specific capacity (789.7 mAh g-1 Zn) and power density (132.2 mW cm-2). Most significantly, after charge-discharge stability, the recharged CrS@CoNi/C-based alkaline zinc-air battery has been employed to exhibit less structural deformation for the cathode and more zincate ion production for the anode side electrodes, which is employed through TEM analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI