A comparative analysis of deep learning models for assisting in the diagnosis of periapical lesions in periapical radiographs

医学 卷积神经网络 诊断准确性 射线照相术 曲线下面积 牙科 人工智能 放射科 内科学 计算机科学 药代动力学
作者
J Z Liu,Chaoran Jin,Xiaolan Wang,Kexu Pan,Z. Li,X L Yi,Yu Shao,Xiaodong Sun,Xijiao Yu
出处
期刊:BMC Oral Health [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12903-025-06104-0
摘要

Abstract Purpose Numerous studies have investigated the use of convolutional neural network (CNN) models for detecting periapical lesions(PLs). However, limited research has focused on evaluating their potential in assisting clinicians with diagnosis. This study aims to utilize two deep learning(DL) models, ConvNeXt and ResNet34, to aid novice dentists in the detection of PLs on periapical radiographs (PRs). By assessing the diagnostic support provided by these models, this research seeks to promote the clinical application of DL in dentistry. Materials and methods In this study, 1,305 PRs were gathered and then split into a training set of 1,044 images and a validation set of 261 images, following an 80/20 ratio. The model’s effectiveness was assessed using various measures, including precision, sensitivity, F1 score, specificity, accuracy, and the area under the curve (AUC). To evaluate the impact of the model on diagnostic performance by novice dentists, we used an additional set of 800 individual teeth PRs, which were not included in the training or validation sets. The diagnostic performance and time of three novice dentists were measured both with and without model assistance. Results The precision of ConvNeXt was 85.93%, with an F1 score of 0.92, accuracy of 91.25%, sensitivity of 98.49%, specificity of 84.11%, and an AUC of 0.9693, outperforming ResNet34 across all metrics. In comparison, ResNet34 achieved a precision of 83.08%, an F1 score of 0.84, accuracy of 81.63%, sensitivity of 84.38%, specificity of 78.13%, and an AUC of 0.8988. In the model-assisted diagnosis phase, both ConvNeXt and ResNet34 improved the diagnostic performance of novice dentists. With the help of ConvNeXt, the average AUC of three dentists increased from 0.88 to 0.94, while with ResNet34, the average AUC of the three dentists improved from 0.88 to 0.91. ConvNeXt performed better than ResNet34 ( p < 0.05). Additionally, ConvNeXt reduced the average diagnostic time of the three dentists from 178.8 min to 141.9 min, while ResNet34 reduced the average diagnostic time from 178.8 min to 153.6 min. Conclusion ConvNeXt significantly improved the diagnostic performance of novice dentists and reduced the time required for diagnosis, thereby enhancing clinical efficiency in both diagnosis and treatment. This model shows potential for application in dental clinics or educational institutions where experienced specialists are limited, but there is a large presence of novice, less-experienced dentists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿雪发布了新的文献求助30
3秒前
potato完成签到,获得积分10
4秒前
小白完成签到,获得积分10
4秒前
6秒前
一铄发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
ding应助朱冬雨采纳,获得10
9秒前
BiuBiuBiu完成签到 ,获得积分10
10秒前
灵犀完成签到,获得积分10
11秒前
12秒前
Sakuta发布了新的文献求助10
12秒前
ClaudiaCY完成签到,获得积分10
13秒前
14秒前
顾矜应助刻苦的元灵采纳,获得10
17秒前
987完成签到 ,获得积分10
17秒前
落叶发布了新的文献求助10
17秒前
孙燕应助犹豫的猫咪采纳,获得30
18秒前
18秒前
小橙完成签到 ,获得积分10
19秒前
20秒前
淡然绿凝完成签到,获得积分10
20秒前
21秒前
Sakuta完成签到,获得积分10
21秒前
yata发布了新的文献求助10
25秒前
杨凯发布了新的文献求助10
26秒前
26秒前
26秒前
bkagyin应助ay采纳,获得10
29秒前
29秒前
30秒前
激情的笙完成签到,获得积分10
31秒前
可爱天川发布了新的文献求助10
31秒前
冷静梦露完成签到,获得积分20
32秒前
32秒前
求知若渴完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
33秒前
丘比特应助痴情的博超采纳,获得10
33秒前
35秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866313
求助须知:如何正确求助?哪些是违规求助? 3408852
关于积分的说明 10660261
捐赠科研通 3132989
什么是DOI,文献DOI怎么找? 1727921
邀请新用户注册赠送积分活动 832563
科研通“疑难数据库(出版商)”最低求助积分说明 780316