Time-Dependent Current Transport Model for Ferroelectric Tunnel Junctions

铁电性 神经形态工程学 材料科学 极化(电化学) 记忆电阻器 非易失性存储器 凝聚态物理 电压 铁电电容器 光电子学 纳米技术 物理 计算机科学 电介质 化学 量子力学 人工智能 物理化学 人工神经网络
作者
Tie-Lin Kong,Jie Bie,Zhuo Chen,Wei Fa,Shuang Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (26): 38190-38202
标识
DOI:10.1021/acsami.5c04408
摘要

Memristors are nonlinear resistors with memory, capable of multiple nonvolatile resistance states. They promise to break through the von Neumann bottleneck, enhance computing speed, and reduce device scaling, ultimately enabling advanced artificial intelligence (AI) computing. Ferroelectric memristors, which modulate resistance through electric-field-induced polarization switching, are considered leading candidates for neuromorphic computing and hold great promise for advancing AI. Understanding their mechanism is key to improving real-world performance. A time-dependent current transport model for ferroelectric memristors with ultrathin ferroelectric layers, i.e., ferroelectric tunnel junctions (FTJs), integrating the Thomas-Fermi screening theory, nonequilibrium Green's Function (NEGF), and polarization reversal dynamics, has been developed to estimate their current response. An optimized processing is proposed to save computational effort. It is assumed that the up and down polarization states of the ferroelectric film are likely to occur at a given voltage. These two states are treated equally to calculate the corresponding potential profiles. Based on these potential results, standard currents of FTJs in these two states are computed by using the time-consuming NEGF method. A particular multidomain polarization switching model is proposed to estimate proportions of two polarization states in the FTJ ferroelectric film at a specific voltage. Based on this model, not only the coercive field but also the polarization reversal speed of a thin film can be estimated. Then, the current response to input voltage is computed as a linear combination of each standard current weighted by its corresponding proportion. An ionic two-dimensional van der Waals (2D vdW) material, CuInP2S6 (CIPS), regarded as an ideal ferroelectric material, is taken to construct model FTJs to test our proposed time-dependent current transport model. Finally, the current response of CIPS-based FTJs to continuously varying input voltage is estimated to well measure their synaptic functions for neuromorphic computing. Our developed model provides an effective approach to not only quickly compute current-voltage curves of FTJs but also accurately simulate their synaptic functions without experiments, accelerating the research and development of these devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lalanlang发布了新的文献求助10
2秒前
2秒前
苏苏发布了新的文献求助10
3秒前
我爱写论文完成签到 ,获得积分10
3秒前
罐装完成签到,获得积分10
4秒前
4秒前
keikei发布了新的文献求助10
5秒前
嘿嘿应助淼淼采纳,获得10
5秒前
LY发布了新的文献求助10
5秒前
狐萝卜头发布了新的文献求助10
7秒前
苑开心完成签到,获得积分10
7秒前
狮子完成签到,获得积分10
9秒前
11秒前
11秒前
ENO_i完成签到,获得积分10
11秒前
13秒前
852应助靓仔采纳,获得10
13秒前
子车茗应助wilsss采纳,获得20
15秒前
时迁完成签到 ,获得积分10
15秒前
CMUSK完成签到 ,获得积分10
18秒前
唐泽轩完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
一灯大师完成签到,获得积分10
19秒前
20秒前
天玄一刀完成签到,获得积分10
21秒前
震动的友琴完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
23秒前
zisui发布了新的文献求助10
25秒前
白白不喽发布了新的文献求助10
25秒前
26秒前
怕黑三毒发布了新的文献求助10
27秒前
靓仔发布了新的文献求助10
27秒前
27秒前
wilsss完成签到,获得积分20
27秒前
完美世界应助一只呆果蝇采纳,获得10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679710
求助须知:如何正确求助?哪些是违规求助? 4993216
关于积分的说明 15170566
捐赠科研通 4839549
什么是DOI,文献DOI怎么找? 2593456
邀请新用户注册赠送积分活动 1546531
关于科研通互助平台的介绍 1504659