Time-Dependent Current Transport Model for Ferroelectric Tunnel Junctions

铁电性 神经形态工程学 材料科学 极化(电化学) 记忆电阻器 非易失性存储器 凝聚态物理 电压 铁电电容器 光电子学 纳米技术 物理 计算机科学 电介质 化学 量子力学 人工智能 物理化学 人工神经网络
作者
Tie-Lin Kong,Jie Bie,Zhuo Chen,Wei Fa,Shuang Chen
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c04408
摘要

Memristors are nonlinear resistors with memory, capable of multiple nonvolatile resistance states. They promise to break through the von Neumann bottleneck, enhance computing speed, and reduce device scaling, ultimately enabling advanced artificial intelligence (AI) computing. Ferroelectric memristors, which modulate resistance through electric-field-induced polarization switching, are considered leading candidates for neuromorphic computing and hold great promise for advancing AI. Understanding their mechanism is key to improving real-world performance. A time-dependent current transport model for ferroelectric memristors with ultrathin ferroelectric layers, i.e., ferroelectric tunnel junctions (FTJs), integrating the Thomas-Fermi screening theory, nonequilibrium Green's Function (NEGF), and polarization reversal dynamics, has been developed to estimate their current response. An optimized processing is proposed to save computational effort. It is assumed that the up and down polarization states of the ferroelectric film are likely to occur at a given voltage. These two states are treated equally to calculate the corresponding potential profiles. Based on these potential results, standard currents of FTJs in these two states are computed by using the time-consuming NEGF method. A particular multidomain polarization switching model is proposed to estimate proportions of two polarization states in the FTJ ferroelectric film at a specific voltage. Based on this model, not only the coercive field but also the polarization reversal speed of a thin film can be estimated. Then, the current response to input voltage is computed as a linear combination of each standard current weighted by its corresponding proportion. An ionic two-dimensional van der Waals (2D vdW) material, CuInP2S6 (CIPS), regarded as an ideal ferroelectric material, is taken to construct model FTJs to test our proposed time-dependent current transport model. Finally, the current response of CIPS-based FTJs to continuously varying input voltage is estimated to well measure their synaptic functions for neuromorphic computing. Our developed model provides an effective approach to not only quickly compute current-voltage curves of FTJs but also accurately simulate their synaptic functions without experiments, accelerating the research and development of these devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
拂晓完成签到 ,获得积分10
刚刚
犇骉发布了新的文献求助10
刚刚
刚刚
幸福的雪枫完成签到 ,获得积分10
1秒前
Lin完成签到,获得积分10
2秒前
梨花发布了新的文献求助10
2秒前
坦率的匪应助ok12采纳,获得10
3秒前
上官若男应助契合采纳,获得10
3秒前
3秒前
果汁橡皮糖完成签到,获得积分10
3秒前
Declan完成签到,获得积分20
3秒前
zhaozhao关注了科研通微信公众号
4秒前
大个应助HSD采纳,获得10
4秒前
核桃应助Jeremy采纳,获得100
4秒前
垫垫完成签到 ,获得积分10
5秒前
小白先生发布了新的文献求助10
5秒前
NexusExplorer应助煜琪采纳,获得10
5秒前
Maryjo发布了新的文献求助10
6秒前
Hayat应助123采纳,获得10
6秒前
852应助Kuhail采纳,获得10
6秒前
未晚发布了新的文献求助10
6秒前
7秒前
WangSiwei完成签到,获得积分10
7秒前
7秒前
Jeffrey完成签到 ,获得积分10
7秒前
科研人完成签到 ,获得积分10
8秒前
9秒前
9秒前
喜悦小猫咪完成签到,获得积分10
9秒前
9秒前
天真晓亦完成签到,获得积分10
10秒前
西瓜完成签到,获得积分10
10秒前
10秒前
小白先生完成签到,获得积分10
10秒前
F0311完成签到,获得积分10
10秒前
gbfgbdfbd完成签到,获得积分10
11秒前
坦率的匪举报嗷嗷求助涉嫌违规
11秒前
酷波er应助uu采纳,获得10
12秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063714
求助须知:如何正确求助?哪些是违规求助? 3602170
关于积分的说明 11440212
捐赠科研通 3325318
什么是DOI,文献DOI怎么找? 1827999
邀请新用户注册赠送积分活动 898489
科研通“疑难数据库(出版商)”最低求助积分说明 819103