Multimodal feature‐guided diffusion model for low‐count PET image denoising

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 图像质量 正电子发射断层摄影术 图像融合 降噪 特征提取 计算机视觉 图像(数学) 核医学 语言学 医学 哲学
作者
Gen Lin,Yuxi Jin,Zhenxing Huang,Zixiang Chen,Haizhou Liu,Chao Zhou,Xu Zhang,Wei Fan,Na Zhang,Liang Dong,Peng Cao,Zhanli Hu
出处
期刊:Medical Physics [Wiley]
卷期号:52 (6): 4403-4415
标识
DOI:10.1002/mp.17764
摘要

Abstract Background To minimize radiation exposure while obtaining high‐quality Positron Emission Tomography (PET) images, various methods have been developed to derive standard‐count PET (SPET) images from low‐count PET (LPET) images. Although deep learning methods have enhanced LPET images, they rarely utilize the rich complementary information from MR images. Even when MR images are used, these methods typically employ early, intermediate, or late fusion strategies to merge features from different CNN streams, failing to fully exploit the complementary properties of multimodal fusion. Purpose In this study, we introduce a novel multimodal feature‐guided diffusion model, termed MFG‐Diff, designed for the denoising of LPET images with the full utilization of MRI. Methods MFG‐Diff replaces random Gaussian noise with LPET images and introduces a novel degradation operator to simulate the physical degradation processes of PET imaging. Besides, it uses a novel cross‐modal guided restoration network to fully exploit the modality‐specific features provided by the LPET and MR images and utilizes a multimodal feature fusion module employing cross‐attention mechanisms and positional encoding at multiple feature levels for better feature fusion. Results Under four counts (2.5%, 5.0%, 10%, and 25%), the images generated by our proposed network showed superior performance compared to those produced by other networks in both qualitative and quantitative evaluations, as well as in statistical analysis. In particular, the peak‐signal‐to‐noise ratio of the generated PET images improved by more than 20% under a 2.5% count, the structural similarity index improved by more than 16%, and the root mean square error reduced by nearly 50%. On the other hand, our generated PET images had significant correlation (Pearson correlation coefficient, 0.9924), consistency, and excellent quantitative evaluation results with the SPET images. Conclusions The proposed method outperformed existing state‐of‐the‐art LPET denoising models and can be used to generate highly correlated and consistent SPET images obtained from LPET images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
希望完成签到 ,获得积分10
刚刚
1秒前
sherry发布了新的文献求助10
2秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
所所应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
杨钧贺发布了新的文献求助20
4秒前
昏睡的祥发布了新的文献求助20
5秒前
5秒前
5秒前
张张发布了新的文献求助10
6秒前
Hello应助sherry采纳,获得10
6秒前
6秒前
雾见春完成签到 ,获得积分10
7秒前
sunny完成签到,获得积分10
7秒前
8秒前
脆脆鲨发布了新的文献求助10
8秒前
Issue发布了新的文献求助10
9秒前
10秒前
猫猫完成签到 ,获得积分10
13秒前
小轩子发布了新的文献求助20
13秒前
chen发布了新的文献求助10
13秒前
清阙完成签到 ,获得积分20
13秒前
KK完成签到 ,获得积分10
13秒前
小马甲应助张张采纳,获得10
14秒前
张楚岚发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
17秒前
111完成签到,获得积分20
19秒前
铃木卿发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Adult Development and Aging, 2nd Canadian Edition 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567276
求助须知:如何正确求助?哪些是违规求助? 4651931
关于积分的说明 14698461
捐赠科研通 4593813
什么是DOI,文献DOI怎么找? 2520457
邀请新用户注册赠送积分活动 1492624
关于科研通互助平台的介绍 1463607