Multimodal feature‐guided diffusion model for low‐count PET image denoising

人工智能 计算机科学 特征(语言学) 模式识别(心理学) 图像质量 正电子发射断层摄影术 图像融合 降噪 特征提取 计算机视觉 图像(数学) 核医学 医学 哲学 语言学
作者
Gen Lin,Yuxi Jin,Zhenxing Huang,Zixiang Chen,Haizhou Liu,Chao Zhou,Xu Zhang,Wei Fan,Na Zhang,Dong Liang,Peng Cao,Zhanli Hu
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17764
摘要

Abstract Background To minimize radiation exposure while obtaining high‐quality Positron Emission Tomography (PET) images, various methods have been developed to derive standard‐count PET (SPET) images from low‐count PET (LPET) images. Although deep learning methods have enhanced LPET images, they rarely utilize the rich complementary information from MR images. Even when MR images are used, these methods typically employ early, intermediate, or late fusion strategies to merge features from different CNN streams, failing to fully exploit the complementary properties of multimodal fusion. Purpose In this study, we introduce a novel multimodal feature‐guided diffusion model, termed MFG‐Diff, designed for the denoising of LPET images with the full utilization of MRI. Methods MFG‐Diff replaces random Gaussian noise with LPET images and introduces a novel degradation operator to simulate the physical degradation processes of PET imaging. Besides, it uses a novel cross‐modal guided restoration network to fully exploit the modality‐specific features provided by the LPET and MR images and utilizes a multimodal feature fusion module employing cross‐attention mechanisms and positional encoding at multiple feature levels for better feature fusion. Results Under four counts (2.5%, 5.0%, 10%, and 25%), the images generated by our proposed network showed superior performance compared to those produced by other networks in both qualitative and quantitative evaluations, as well as in statistical analysis. In particular, the peak‐signal‐to‐noise ratio of the generated PET images improved by more than 20% under a 2.5% count, the structural similarity index improved by more than 16%, and the root mean square error reduced by nearly 50%. On the other hand, our generated PET images had significant correlation (Pearson correlation coefficient, 0.9924), consistency, and excellent quantitative evaluation results with the SPET images. Conclusions The proposed method outperformed existing state‐of‐the‐art LPET denoising models and can be used to generate highly correlated and consistent SPET images obtained from LPET images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
打打应助小狮子采纳,获得10
2秒前
3秒前
猫科动物完成签到,获得积分10
4秒前
4秒前
深情安青应助小熊采纳,获得10
5秒前
乐乐应助peterlzb1234567采纳,获得10
5秒前
纨绔完成签到 ,获得积分20
5秒前
健康的黎云完成签到,获得积分20
6秒前
布二发布了新的文献求助30
6秒前
6秒前
丘比特应助皮崇知采纳,获得10
7秒前
7秒前
7秒前
车幻梦发布了新的文献求助10
7秒前
7秒前
大个应助酱油恒采纳,获得30
7秒前
7秒前
onestep发布了新的文献求助10
8秒前
FashionBoy应助载荷采纳,获得10
8秒前
科研通AI6应助古夕采纳,获得30
8秒前
9秒前
蒋医生完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
虞子发布了新的文献求助10
11秒前
11秒前
1444791378完成签到,获得积分10
12秒前
12秒前
小沈发布了新的文献求助10
12秒前
小白完成签到,获得积分10
12秒前
12秒前
xk发布了新的文献求助10
13秒前
坚果发布了新的文献求助10
14秒前
皮崇知完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4716196
求助须知:如何正确求助?哪些是违规求助? 4078291
关于积分的说明 12613067
捐赠科研通 3781756
什么是DOI,文献DOI怎么找? 2088916
邀请新用户注册赠送积分活动 1115172
科研通“疑难数据库(出版商)”最低求助积分说明 992352