Human-Centered Artificial Intelligence: A Field Experiment

人工智能 领域(数学) 计算机科学 心理学 数据科学 数学 纯数学
作者
Sebastian Krakowski,Darek Haftor,Johannes Luger,Natallia Pashkevich,Sebastian Raisch
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:72 (1): 57-72 被引量:7
标识
DOI:10.1287/mnsc.2022.03849
摘要

Humans and artificial intelligence (AI) algorithms increasingly interact on unstructured managerial tasks. We propose that tailoring this human-AI interaction to align with individuals’ cognitive preferences is essential for enhancing performance. This hypothesis is examined through a field experiment in a multinational pharmaceutical firm. In the experiment, we manipulated four contextual parameters of human-AI interaction—work procedures, decision-making authority, training, and incentives—to align with sales experts’ cognitive styles, categorized as either adaptors or innovators. Our results show that tailored interaction significantly improves sales performance, whereas untailored interaction results in negative treatment effects compared with both the tailored and control conditions. Qualitative evidence suggests that this negative outcome arises from role conflicts and ambiguities in untailored interaction. Exploring the mechanisms underlying these outcomes further, a mediation analysis of AI login data reveals that human-AI interaction tailoring leads sales experts to adjust their AI utilization, which contributes to the observed performance outcomes. These findings support a human-centered approach to AI that prioritizes individuals’ information-processing needs and tailors their interaction with AI accordingly. This paper was accepted by Catherine Tucker, Special Issue on the Human-Algorithm Connection. Funding: This work was supported by Erling Persson Family Foundation; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung [Grants 100013M 204670, 181364, 185164]; Jan Wallanders och Tom Hedelius Stiftelse samt Tore Browaldhs Stiftelse [Grant W20-0036]; Marianne and Marcus Wallenberg Foundation [Grants 2021.0074, 2021.0133]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03849 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
晓磊发布了新的文献求助10
刚刚
刚刚
熊大发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
Ava应助冯文梅采纳,获得10
2秒前
张佳宁发布了新的文献求助10
3秒前
荷属安完成签到,获得积分10
4秒前
畅快沛山发布了新的文献求助10
4秒前
Frank完成签到,获得积分0
5秒前
aidiresi发布了新的文献求助10
7秒前
Juliette完成签到,获得积分10
8秒前
001100完成签到,获得积分10
9秒前
Ava应助漫步云端采纳,获得10
9秒前
10秒前
10秒前
无花果应助张越采纳,获得10
11秒前
13秒前
mddy完成签到,获得积分10
14秒前
14秒前
王1发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
大炮完成签到,获得积分10
17秒前
冯文梅完成签到,获得积分10
17秒前
19秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
zzs发布了新的文献求助10
21秒前
灵巧书本应助飞舞的青鱼采纳,获得10
21秒前
冯文梅发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
可靠小懒虫完成签到,获得积分10
23秒前
orixero应助开心木木采纳,获得10
24秒前
hua完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777681
求助须知:如何正确求助?哪些是违规求助? 5634904
关于积分的说明 15446453
捐赠科研通 4909598
什么是DOI,文献DOI怎么找? 2641824
邀请新用户注册赠送积分活动 1589755
关于科研通互助平台的介绍 1544203