清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PScL-SDNNMAE: Protein Subcellular Localization Prediction Using Classical and Masked Autoencoder-Based Multi-View Features With Ensemble Feature Selection

自编码 特征选择 人工智能 模式识别(心理学) 特征(语言学) 选择(遗传算法) 计算机科学 人工神经网络 哲学 语言学
作者
Shiqiao Gu,Matee Ullah,Jiangning Song,Dong‐Jun Yu
标识
DOI:10.1109/tcbbio.2025.3562809
摘要

Accurate prediction of protein subcellular localization is critical for understanding cellular functions and guiding drug design. However, current computational methods have limited and insufficient performance and as such, there exist few efficient vision learners based on self-supervised learning for extracting deep and informative features. To address it, we propose a novel bioimage-based method, termed PScL-SDNNMAE, to effectively predict the subcellular localizations of proteins in human cells. PScL-SDNNMAE first extracts classical features using traditional image descriptors. Next, the masked autoencoder (MAE) is first trained using the training image data and then used to extract the MAE-based deep features. In the feature selection phase, PScL-SDNNMAE applies the Analysis of Variance (ANOVA), Mutual Information (MI) and stepwise discriminant analysis (SDA) to select the optimal features from the classical feature sets. Finally, PScL-SDNNMAE trains the deep neural network (DNN) classifier using the super feature set generated by integrating all the classical optimal and MAE-based deep features. Extensive benchmark experiments including 10-fold cross-validation on the training dataset and independent test on the independent dataset illustrate more advanced performance and generalization capability of PScL-SDNNMAE than other existing state-of-the-art predictors. Moreover, the experiments also demonstrate the effectiveness of self-supervised learning methods in learning representations of IHC images, as well as the significant potential for pre-training on massive unlabeled datasets in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kzxhql发布了新的文献求助10
2秒前
17秒前
20秒前
V_I_G完成签到 ,获得积分10
22秒前
minnie完成签到 ,获得积分10
23秒前
29秒前
专注的觅云完成签到 ,获得积分10
32秒前
怪怪完成签到,获得积分10
36秒前
Nene完成签到 ,获得积分20
40秒前
45秒前
xxfsx应助kzxhql采纳,获得10
48秒前
xxfsx应助kzxhql采纳,获得10
48秒前
1分钟前
Funnymudpee发布了新的文献求助10
1分钟前
1分钟前
MTF完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
Eileen完成签到 ,获得积分0
2分钟前
合不着完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
5分钟前
天玄发布了新的文献求助10
5分钟前
5分钟前
糟糕的翅膀完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
6分钟前
披着羊皮的狼完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482509
求助须知:如何正确求助?哪些是违规求助? 4583305
关于积分的说明 14389165
捐赠科研通 4512439
什么是DOI,文献DOI怎么找? 2472945
邀请新用户注册赠送积分活动 1459144
关于科研通互助平台的介绍 1432624