A Specialized and Enhanced Deep Generation Model for Active Molecular Design Targeting Kinases Guided by Affinity Prediction Models and Reinforcement Learning

强化学习 激酶 计算生物学 钢筋 人工智能 计算机科学 化学 神经科学 生物 细胞生物学 心理学 社会心理学
作者
Xiaomeng Liu,Qin Li,Yan Xiao,Lingling Wang,Jiayue Qiu,Xiaojun Yao,Huanxiang Liu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00074
摘要

Kinases are critical regulators in numerous cellular processes, and their dysregulation is linked to various diseases, including cancer. Thus, protein kinases have emerged as major drug targets at present, with approximately a quarter to a third of global drug development efforts focusing on kinases. Additionally, deep learning-based molecular generation methods have shown obvious advantages in exploring large chemical space and improving the efficiency of drug discovery. However, many current molecular generation models face challenges in considering specific targets and generating molecules with desired properties, such as target-related activity. Here, we developed a specialized and enhanced deep learning-based molecular generation framework named KinGen, which is specially designed for the efficient generation of small molecule kinase inhibitors. By integrating reinforcement learning, transfer learning, and a specialized reward module, KinGen leverages a binding affinity prediction model as part of its reward function, which allows it to accurately guide the generation process toward biologically relevant molecules with high target activity. This approach not only ensures that the generated molecules have desirable binding properties but also improves the efficiency of molecular optimization. The results demonstrate that KinGen can generate structurally valid, unique, and diverse molecules. The generated molecules exhibit binding affinities to the target that are comparable to known inhibitors, achieving an average docking score of -9.5 kcal/mol, which highlights the model's ability to design compounds with enhanced activity. These results suggest that KinGen has the potential to serve as an effective tool for accelerating kinase-targeted drug discovery efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助健康的秋采纳,获得10
1秒前
陈牛逼完成签到,获得积分10
1秒前
汉堡包应助Junex采纳,获得30
1秒前
1秒前
1秒前
2秒前
2秒前
周周发布了新的文献求助10
2秒前
KULI完成签到,获得积分10
2秒前
我爱科研完成签到,获得积分10
3秒前
4秒前
4秒前
nazi发布了新的文献求助10
4秒前
4秒前
科研通AI5应助猪猪女孩采纳,获得10
4秒前
zzer发布了新的文献求助10
4秒前
5秒前
科研通AI5应助雷寒云采纳,获得10
6秒前
KULI发布了新的文献求助10
6秒前
英姑应助嘀嘀咕咕采纳,获得10
6秒前
6秒前
小贝壳发布了新的文献求助10
6秒前
yueyue3SCI发布了新的文献求助20
7秒前
黑犬发布了新的文献求助10
7秒前
8秒前
8秒前
18062677029完成签到 ,获得积分10
8秒前
执着的导师完成签到,获得积分10
9秒前
诸醉山完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
danielbbbb完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
hui发布了新的文献求助10
11秒前
KYDD发布了新的文献求助10
12秒前
12秒前
brainxue完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956