High-precision temperature control algorithm based on equivalent circuit model of thermoelectric cooling

技术 温度控制 等效电路 算法 材料科学 计算机科学 控制(管理) 控制理论(社会学) 工程类 物理 电气工程 机械工程 人工智能 地球物理学 电压 电离层
作者
ZHU Chongxi,CHEN Xinao,Cheng Zhang,Tao Wang,Lidan Jiang,Maohua Jiang,Peng Zhang,Renjiang Zhu,Faculty of Science, The University of Hong Kong, Hong Kong 999077 China,College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China,National Center for Applied Mathematics in Chongqing, Chongqing Normal University, Chongqing 401331, China
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:74 (12): 124401-124401
标识
DOI:10.7498/aps.74.20250347
摘要

<sec>High-precision temperature control systems based on thermoelectric cooling (TEC) have important applications in maintaining the stability and operational precision of advanced semiconductor optoelectronic devices, including single-frequency semiconductor lasers, optical frequency combs, and photometric measurement systems. However, the intrinsic high thermal inertia and nonlinear electro-thermal coupling characteristics of TEC systems make it challenging for traditional proportional-integral-derivative (PID) control algorithms to achieve the required millikelvin-level (mK) precision due to their tendency toward overshoot and oscillation.</sec><sec>In response to these issues, the internal electro-thermal conversion mechanisms, heat conduction, and dissipation dynamics of TEC systems are investigated in this work, and a high-precision temperature control approach is proposed based on an equivalent circuit model. By accurately constructing and verifying this equivalent circuit model, the oscillation characteristics and limitations inherent in traditional PID control are studied. Subsequently, an adaptive PID algorithm incorporating dynamic DC bias for enhanced precision is introduced. Specifically, the algorithm utilizes a traditional PID strategy to rapidly approximate the target temperature in the initial control stage. As the system approaches the target temperature and the temperature fluctuation decreases, it will automatically switch to an adaptive high-precision PID mode with dynamic DC bias. In this adaptive mode, the system continuously calculates the average output current and integrates temperature control errors over nearest time intervals. The overall control output is dynamically adjusted through adaptive weighting and deviation calculation to effectively counteract asymptotic and transient environmental disturbances. Additionally, the algorithm adopts an enhanced control strategy that combines dual-temperature sensing, primarily leveraging dynamic analysis of the hot-side temperature measurement to anticipate and counteract thermal disturbances. This predictive feedforward compensation, based on analyzing the rapid dynamic trends of the hot-side temperature, enables the controller to react preemptively to fast-changing disturbances before they significantly affect the controlled object, thereby substantially improving overall system stability and precision.</sec><sec>Simulation results demonstrate that the proposed adaptive PID algorithm with dynamic DC bias can consistently maintain temperature control accuracy at a millikelvin level. It effectively mitigates transient and gradual environmental temperature disturbances, exhibiting excellent robustness against varying PID parameter settings. Furthermore, the core logic of the algorithm remains straightforward, computationally efficient, and hardware-friendly, making it particularly suitable for embedded system implementation and practical engineering deployment.</sec><sec>In conclusion, the high-precision adaptive PID temperature control strategy presented herein possesses significant theoretical and practical value by addressing inherent TEC system challenges through detailed internal modeling and adaptive control strategies, contributing both theoretically and practically to high-precision temperature control engineering.</sec>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IAN驳回了顾矜应助
1秒前
Jasper应助赵亚南采纳,获得10
1秒前
元骑走之辣完成签到 ,获得积分10
2秒前
123mmmm发布了新的文献求助30
2秒前
研友_VZG7GZ应助丧彪采纳,获得10
2秒前
crazzzzzy完成签到,获得积分20
2秒前
小蘑菇应助长安风采纳,获得30
2秒前
权涛发布了新的文献求助10
2秒前
金123456789完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
蜘蛛侠呢完成签到 ,获得积分10
3秒前
花痴的手套完成签到 ,获得积分10
3秒前
3秒前
南风喜欢完成签到,获得积分10
4秒前
cenghao发布了新的文献求助10
5秒前
5秒前
棠梨煎雪完成签到,获得积分10
5秒前
link发布了新的文献求助10
6秒前
佳佳发布了新的文献求助10
6秒前
6秒前
JT完成签到,获得积分10
6秒前
wzc发布了新的文献求助10
7秒前
CZJ完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Jasper应助didoo采纳,获得200
8秒前
8秒前
彭于晏应助开朗嵩采纳,获得10
8秒前
9秒前
烟花应助狂野的蜡烛采纳,获得10
9秒前
haocheng完成签到,获得积分10
9秒前
七七发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
科研通AI6应助link采纳,获得10
9秒前
新人类发布了新的文献求助10
9秒前
18完成签到,获得积分10
10秒前
绿树成荫发布了新的文献求助10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614534
求助须知:如何正确求助?哪些是违规求助? 4699484
关于积分的说明 14903520
捐赠科研通 4739530
什么是DOI,文献DOI怎么找? 2547633
邀请新用户注册赠送积分活动 1511464
关于科研通互助平台的介绍 1473677