A Surface-Enhanced Raman Spectroscopy Platform Integrating Dual Signal Enhancement and Machine Learning for Rapid Detection of Veterinary Drug Residues in Meat Products

材料科学 表面增强拉曼光谱 拉曼光谱 兽药 色谱法 化学 拉曼散射 光学 物理
作者
Yunpeng Wang,Chengming Li,Yang Yang,Chaochao Ma,Xiaojiao Zhao,Jiacheng Li,Lin Wei,Yang Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:17 (10): 16202-16212 被引量:4
标识
DOI:10.1021/acsami.4c21938
摘要

The detection and quantification of veterinary drug residues in meat remain a significant challenge due to the complex background interference inherent to the meat matrix, which compromises the stability and accuracy of spectroscopic analysis. This study introduces an advanced label-free surface-enhanced Raman spectroscopy (SERS) platform for the precise identification and quantification of veterinary drugs. By employing a dual enhancement strategy involving sodium borohydride activation and calcium ion-deuterium oxide guidance, this platform achieves the efficient capture and signal amplification of drug molecules on highly active nanoparticles. High-quality SERS spectra were obtained for carprofen, doxycycline hydrochloride, chloramphenicol, and penicillin G sodium salt, enabling accurate classification and interference suppression. In addition, the application of machine learning algorithms, including PCA-LDA, heatmap, and decision tree modeling, allows for accurate differentiation of mixed drug samples. Quantitative analyses in meat samples were achieved through Raman intensity ratios and multivariate curve resolution-alternate least-squares (MCR-ALS) analysis, with results showing high consistency with high-performance liquid chromatography (HPLC) measurements. These findings highlight the potential of this SERS-based platform for accurate and rapid detection of multicomponent veterinary drug residues in complex food matrices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
看文献了发布了新的文献求助10
1秒前
无情威发布了新的文献求助50
2秒前
2秒前
常常完成签到 ,获得积分10
2秒前
zy发布了新的文献求助30
3秒前
Lucas应助睡不完的觉采纳,获得10
3秒前
靓丽安萱发布了新的文献求助10
3秒前
小蘑菇应助loogn7采纳,获得10
4秒前
烟花应助努力毕业啊采纳,获得10
5秒前
5秒前
YAN发布了新的文献求助20
6秒前
孤尘风凌发布了新的文献求助10
7秒前
8秒前
8秒前
华仔应助水煮菜采纳,获得10
9秒前
9秒前
搜集达人应助兰lanlan采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
gs发布了新的文献求助10
12秒前
12秒前
bound发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
弧线发布了新的文献求助10
14秒前
简单点吧发布了新的文献求助10
15秒前
李萌发布了新的文献求助10
15秒前
15秒前
小小户发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
青衣北风发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650