Enhanced recognition and counting of high-coverage Amorphophallus konjac by integrating UAV RGB imagery and deep learning

计算机科学 魔芋属 深度学习 RGB颜色模型 人工智能 模式识别(心理学) 计算机视觉 生物 植物
作者
Ziyi Yang,Kunrong Hu,Weili Kou,Weiheng Xu,Huan Wang,Ning Lu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:1
标识
DOI:10.1038/s41598-025-91364-7
摘要

Accurate counting of Amorphophallus konjac (Konjac) plants can offer valuable insights for agricultural management and yield prediction. While current studies have primarily focused on detecting and counting crop plants during the early stages of low coverage, there is limited investigation into the later stages of high coverage, which could impact the accuracy of forecasting yield. High canopy coverage and severe occlusion in later stages pose significant challenges for plant detection and counting. Therefore, this study evaluated the performance of the Count Crops tool and a deep learning (DL) model derived from early-stage unmanned aerial vehicle (UAV) imagery in detecting and counting Konjac plants during the high-coverage growth stage. Additionally, the study proposed an approach that integrates the DL model with Konjac location information from both early-stage and high canopy coverage stage imagery to improve the accuracy of recognizing Konjac plants during the high canopy coverage stage. The results indicated that the Count Crops tool outperformed the DL model constructed solely from early-stage imagery in detecting and counting Konjac plants during the high-coverage period. However, given the single stem and erect growth characteristics of Konjac, incorporating the DL model with the location information of the Konjac plants achieved the highest accuracy (Precision = 98.7%, Recall = 86.7%, F1-score = 92.3%). Our findings indicate that combining DL detection results from the early growth stages of Konjac, along with plant positional information from both growth stages, not only significantly improved the accuracy of detecting and counting plants but also saved time on annotating and training DL samples in the later stages. This study introduces an innovative approach for detecting and counting Konjac plants during high-coverage periods, providing a new perspective for recognizing and counting other crop plants at high-overlapping growth stages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐泽雪穗应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
唐泽雪穗应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
不懈奋进应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
唐泽雪穗应助科研通管家采纳,获得10
1秒前
21完成签到 ,获得积分10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
小安在变大完成签到,获得积分10
3秒前
4秒前
精明代丝发布了新的文献求助10
5秒前
今后应助冉冉采纳,获得10
5秒前
5秒前
可爱的函函应助EJSA采纳,获得10
6秒前
丘比特应助哞哞采纳,获得10
6秒前
6秒前
7秒前
black发布了新的文献求助10
7秒前
8秒前
corewellnuts完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
Ronna发布了新的文献求助10
10秒前
深情安青应助dawn采纳,获得10
11秒前
木木发布了新的文献求助10
11秒前
lk发布了新的文献求助10
12秒前
15秒前
22完成签到,获得积分10
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739599
求助须知:如何正确求助?哪些是违规求助? 4090813
关于积分的说明 12654492
捐赠科研通 3800339
什么是DOI,文献DOI怎么找? 2098593
邀请新用户注册赠送积分活动 1123964
科研通“疑难数据库(出版商)”最低求助积分说明 999229