MyoPS: A benchmark of myocardial pathology segmentation combining three-sequence cardiac magnetic resonance images

分割 水准点(测量) 计算机科学 人工智能 预处理器 心脏磁共振 心肌梗塞 磁共振成像 图像分割 医学物理学 医学 模式识别(心理学) 放射科 心脏病学 大地测量学 地理
作者
Lei Li,Fuping Wu,Sihan Wang,Xinzhe Luo,Carlos Martín-Isla,Shuwei Zhai,Jianpeng Zhang,Yanfei Liu,Zhen Zhang,Markus J. Ankenbrand,Haochuan Jiang,Xiaoran Zhang,Lınhong Wang,Tewodros Weldebirhan Arega,Elif Altunok,Zhou Zhao,Feiyan Li,Jun Ma,Xiaoping Yang,Élodie Puybareau
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102808-102808 被引量:28
标识
DOI:10.1016/j.media.2023.102808
摘要

Assessment of myocardial viability is essential in diagnosis and treatment management of patients suffering from myocardial infarction, and classification of pathology on the myocardium is the key to this assessment. This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS) combining three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020. Note that MyoPS refers to both myocardial pathology segmentation and the challenge in this paper. The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation. In this article, we provide details of the challenge, survey the works from fifteen participants and interpret their methods according to five aspects, i.e., preprocessing, data augmentation, learning strategy, model architecture and post-processing. In addition, we analyze the results with respect to different factors, in order to examine the key obstacles and explore the potential of solutions, as well as to provide a benchmark for future research. The average Dice scores of submitted algorithms were 0.614±0.231 and 0.644±0.153 for myocardial scars and edema, respectively. We conclude that while promising results have been reported, the research is still in the early stage, and more in-depth exploration is needed before a successful application to the clinics. MyoPS data and evaluation tool continue to be publicly available upon registration via its homepage (www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lux丶完成签到 ,获得积分10
3秒前
糕糕完成签到 ,获得积分10
7秒前
7秒前
10秒前
10秒前
11秒前
rong完成签到 ,获得积分10
13秒前
13秒前
算不尽发布了新的文献求助10
13秒前
吗喽大人发布了新的文献求助10
15秒前
16秒前
虾米发布了新的文献求助10
17秒前
11发布了新的文献求助10
18秒前
椿iii完成签到 ,获得积分10
19秒前
21秒前
Andrew完成签到,获得积分10
22秒前
帅气的天磊完成签到,获得积分10
22秒前
24秒前
十二月完成签到,获得积分10
24秒前
含糊完成签到 ,获得积分10
25秒前
夏天的西瓜完成签到,获得积分10
26秒前
zoro发布了新的文献求助10
28秒前
年三月完成签到 ,获得积分10
28秒前
fzhou完成签到 ,获得积分10
28秒前
虾米完成签到,获得积分10
35秒前
曾经的依风完成签到,获得积分10
39秒前
40秒前
义气的访波应助qqshown采纳,获得10
41秒前
petrichor完成签到 ,获得积分10
41秒前
田様应助科研通管家采纳,获得10
42秒前
Orange应助科研通管家采纳,获得10
42秒前
Lucas应助科研通管家采纳,获得10
42秒前
爆米花应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
pluto应助科研通管家采纳,获得10
42秒前
Pakham发布了新的文献求助10
46秒前
48秒前
SciEngineerX完成签到,获得积分10
48秒前
北秋颐发布了新的文献求助10
54秒前
persi完成签到 ,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751