已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine-learning approach based on multiparametric MRI to identify the risk of non-sentinel lymph node metastasis in patients with early-stage breast cancer

医学 乳腺癌 前哨淋巴结 转移 阶段(地层学) 放射科 淋巴结 淋巴 癌症 肿瘤科 内科学 病理 古生物学 生物
作者
Haitong Yu,Li Qin,Fucai Xie,Shasha Wu,Yongsheng Chen,Chuansheng Huang,Yonglin Xu,Qingliang Niu
出处
期刊:Acta Radiologica [SAGE]
卷期号:65 (2): 185-194 被引量:3
标识
DOI:10.1177/02841851231215464
摘要

Background It has been reported that patients with early breast cancer with 1–2 positive sentinel lymph nodes have a lower risk of non-sentinel lymph node (NSLN) metastasis and cannot benefit from axillary lymph node dissection. Purpose To develop the potential of machine learning based on multiparametric magnetic resonance imaging (MRI) and clinical factors for predicting the risk of NSLN metastasis in breast cancer. Material and Methods This retrospective study included 144 patients with 1–2 positive sentinel lymph node breast cancer. Multiparametric MRI morphologic findings and the detailed demographical characteristics of the primary tumor and axillary lymph node were extracted. The logistic regression, support vector classification, extreme gradient boosting, and random forest algorithm models were established to predict the risk of NSLN metastasis. The prediction efficiency of a machine-learning–based model was evaluated. Finally, the relative importance of each input variable was analyzed for the best model. Results Of the 144 patients, 80 (55.6%) developed NSLN metastasis. A total of 24 imaging features and 14 clinicopathological features were analyzed. The extreme gradient boosting algorithm had the strongest prediction efficiency with an area under curve of 0.881 and 0.781 in the training set and test set, respectively. Five main factors for the metastasis of NSLN were found, including histological grade, cortical thickness, fatty hilum, short axis of lymph node, and age. Conclusion The machine-learning model incorporating multiparametric MRI features and clinical factors can predict NSLN metastasis with high accuracy for breast cancer and provide predictive information for clinical protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
1秒前
5秒前
7秒前
李爱国应助二十二采纳,获得10
8秒前
8秒前
哈哈哈哈完成签到 ,获得积分10
9秒前
dddd完成签到 ,获得积分10
10秒前
Lian发布了新的文献求助10
10秒前
沧海静音发布了新的文献求助10
11秒前
balabala发布了新的文献求助10
12秒前
HaonanZhang发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
忘桑榆完成签到,获得积分10
16秒前
17秒前
JiahaoRao应助Aegean采纳,获得20
17秒前
单薄傲易发布了新的文献求助10
19秒前
yarkye完成签到,获得积分10
20秒前
机长完成签到 ,获得积分10
21秒前
YZY完成签到,获得积分10
22秒前
22秒前
今后应助zhengxiaomin1992采纳,获得10
22秒前
hellokk发布了新的文献求助50
23秒前
852应助lllz采纳,获得30
23秒前
单薄傲易完成签到,获得积分10
27秒前
研友_VZG7GZ应助joe采纳,获得10
28秒前
二十二完成签到,获得积分10
29秒前
隐形曼青应助木木采纳,获得10
30秒前
30秒前
无花果应助JG采纳,获得10
31秒前
34秒前
34秒前
35秒前
35秒前
Lian完成签到,获得积分10
36秒前
kk发布了新的文献求助10
36秒前
37秒前
开心香岚发布了新的文献求助10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542713
求助须知:如何正确求助?哪些是违规求助? 4628923
关于积分的说明 14610300
捐赠科研通 4570087
什么是DOI,文献DOI怎么找? 2505599
邀请新用户注册赠送积分活动 1482928
关于科研通互助平台的介绍 1454289