医学
乳腺癌
前哨淋巴结
转移
阶段(地层学)
放射科
淋巴结
淋巴
癌症
肿瘤科
内科学
病理
古生物学
生物
作者
Haitong Yu,Li Qin,Fucai Xie,Shasha Wu,Yongsheng Chen,Chuansheng Huang,Yonglin Xu,Qingliang Niu
标识
DOI:10.1177/02841851231215464
摘要
Background It has been reported that patients with early breast cancer with 1–2 positive sentinel lymph nodes have a lower risk of non-sentinel lymph node (NSLN) metastasis and cannot benefit from axillary lymph node dissection. Purpose To develop the potential of machine learning based on multiparametric magnetic resonance imaging (MRI) and clinical factors for predicting the risk of NSLN metastasis in breast cancer. Material and Methods This retrospective study included 144 patients with 1–2 positive sentinel lymph node breast cancer. Multiparametric MRI morphologic findings and the detailed demographical characteristics of the primary tumor and axillary lymph node were extracted. The logistic regression, support vector classification, extreme gradient boosting, and random forest algorithm models were established to predict the risk of NSLN metastasis. The prediction efficiency of a machine-learning–based model was evaluated. Finally, the relative importance of each input variable was analyzed for the best model. Results Of the 144 patients, 80 (55.6%) developed NSLN metastasis. A total of 24 imaging features and 14 clinicopathological features were analyzed. The extreme gradient boosting algorithm had the strongest prediction efficiency with an area under curve of 0.881 and 0.781 in the training set and test set, respectively. Five main factors for the metastasis of NSLN were found, including histological grade, cortical thickness, fatty hilum, short axis of lymph node, and age. Conclusion The machine-learning model incorporating multiparametric MRI features and clinical factors can predict NSLN metastasis with high accuracy for breast cancer and provide predictive information for clinical protocol.
科研通智能强力驱动
Strongly Powered by AbleSci AI