Classifying Protein–Protein Binding Affinity with Free-Energy Calculations and Machine Learning Approaches

相互作用体 稳健性(进化) 随机森林 线性判别分析 黑腹果蝇 机器学习 人工智能 计算机科学 生物系统 结合能 计算生物学 化学 生物 生物化学 物理 核物理学 基因
作者
Emma Goulard Coderc de Lacam,Benoı̂t Roux,Christophe Chipot
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (3): 1081-1091 被引量:6
标识
DOI:10.1021/acs.jcim.3c01586
摘要

Understanding the intricate phenomenon of neuronal wiring in the brain is of great interest in neuroscience. In the fruit fly, Drosophila melanogaster, the Dpr-DIP interactome has been identified to play an important role in this process. However, experimental data suggest that a merely limited subset of complexes, essentially 57 out of a total of 231, exhibit strong binding affinity. In this work, we sought to identify the residue-level molecular basis underlying the difference in binding affinity using a state-of-the-art methodology consisting of standard binding free-energy calculations with a geometrical route and machine learning (ML) techniques. We determined the binding affinity for two complexes using statistical mechanics simulations, achieving an excellent reproduction of the experimental data. Moreover, we predicted the binding free energy for two additional low-affinity complexes, devoid of experimental estimation, while simultaneously identifying key residues for the binding. Furthermore, through the use of ML algorithms, linear discriminant analysis, and random forest, we achieved remarkable accuracy, as high as 0.99, in discerning between strong (cognate) and weak (noncognate) binders. The presented ML approach encompasses easily transferable input features, enabling its broad application to any interactome while facilitating the identification of pivotal residues critical for binding interactions. The predictive power of the generated model was probed on similar protein families from 13 diverse species. Our ML model exhibited commendable performance on these additional data sets, showcasing its reliability and robustness across the species barrier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahhh7发布了新的文献求助10
刚刚
ting应助zly采纳,获得10
1秒前
ZGH完成签到,获得积分10
1秒前
王qc发布了新的文献求助10
1秒前
毅梦发布了新的文献求助10
3秒前
童绾绾发布了新的文献求助10
3秒前
酷酷纹完成签到,获得积分10
3秒前
和谐沛芹发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
Orange应助冰墨采纳,获得10
4秒前
4秒前
Twonej应助Accept采纳,获得30
4秒前
4秒前
123完成签到 ,获得积分10
4秒前
LINF完成签到,获得积分10
4秒前
5秒前
5秒前
dkkkkk发布了新的文献求助10
7秒前
djm完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
温馨发布了新的文献求助10
8秒前
9秒前
Jiang完成签到,获得积分10
9秒前
丸子完成签到,获得积分10
10秒前
hklz发布了新的文献求助10
10秒前
10秒前
11秒前
fghlqm完成签到,获得积分10
11秒前
所所应助RYAN采纳,获得10
11秒前
宣莫言发布了新的文献求助30
12秒前
科目三应助毅梦采纳,获得30
12秒前
肖肖完成签到,获得积分10
13秒前
zly完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
ymm216688完成签到,获得积分20
15秒前
今后应助RYAN采纳,获得10
15秒前
15秒前
111关闭了111文献求助
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713080
求助须知:如何正确求助?哪些是违规求助? 5213364
关于积分的说明 15269379
捐赠科研通 4864862
什么是DOI,文献DOI怎么找? 2611713
邀请新用户注册赠送积分活动 1561997
关于科研通互助平台的介绍 1519171