清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Severity-stratification of interstitial lung disease by deep learning enabled assessment and quantification of lesion indicators from HRCT images

医学 列线图 间质性肺病 多元统计 放射科 阶段(地层学) 多元分析 卷积神经网络 接收机工作特性 内科学 人工智能 计算机科学 机器学习 生物 古生物学
作者
Yexin Lai,Xueyu Liu,Fan Fan Hou,Zhiyong Han,E Linning,Ningling Su,Dianrong Du,Zhichong Wang,Wen Zheng,Yongfei Wu
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:32 (2): 323-338 被引量:1
标识
DOI:10.3233/xst-230218
摘要

BACKGROUND: Interstitial lung disease (ILD) represents a group of chronic heterogeneous diseases, and current clinical practice in assessment of ILD severity and progression mainly rely on the radiologist-based visual screening, which greatly restricts the accuracy of disease assessment due to the high inter- and intra-subjective observer variability. OBJECTIVE: To solve these problems, in this work, we propose a deep learning driven framework that can assess and quantify lesion indicators and outcome the prediction of severity of ILD. METHODS: In detail, we first present a convolutional neural network that can segment and quantify five types of lesions including HC, RO, GGO, CONS, and EMPH from HRCT of ILD patients, and then we conduct quantitative analysis to select the features related to ILD based on the segmented lesions and clinical data. Finally, a multivariate prediction model based on nomogram to predict the severity of ILD is established by combining multiple typical lesions. RESULTS: Experimental results showed that three lesions of HC, RO, and GGO could accurately predict ILD staging independently or combined with other HRCT features. Based on the HRCT, the used multivariate model can achieve the highest AUC value of 0.755 for HC, and the lowest AUC value of 0.701 for RO in stage I, and obtain the highest AUC value of 0.803 for HC, and the lowest AUC value of 0.733 for RO in stage II. Additionally, our ILD scoring model could achieve an average accuracy of 0.812 (0.736 - 0.888) in predicting the severity of ILD via cross-validation. CONCLUSIONS: In summary, our proposed method provides effective segmentation of ILD lesions by a comprehensive deep-learning approach and confirms its potential effectiveness in improving diagnostic accuracy for clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Drwang完成签到,获得积分10
3秒前
科研通AI5应助跳跃的浩阑采纳,获得30
5秒前
彩色映雁完成签到 ,获得积分10
7秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
12秒前
动漫大师发布了新的文献求助10
18秒前
海阔天空完成签到 ,获得积分10
27秒前
Ji完成签到,获得积分10
36秒前
习月阳完成签到,获得积分10
36秒前
45秒前
怡然的剑发布了新的文献求助10
51秒前
fogsea完成签到,获得积分0
52秒前
scitester完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
稻子完成签到 ,获得积分10
1分钟前
1分钟前
Wen完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
蒲蒲完成签到 ,获得积分10
2分钟前
威fly完成签到,获得积分10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
不知道完成签到,获得积分10
2分钟前
Shawn完成签到 ,获得积分10
2分钟前
mendicant完成签到,获得积分10
2分钟前
qq158014169完成签到 ,获得积分10
2分钟前
故意的书本完成签到 ,获得积分10
2分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
林利芳完成签到 ,获得积分10
3分钟前
自信花生发布了新的文献求助10
3分钟前
3分钟前
淡然怀亦发布了新的文献求助10
3分钟前
Orange应助suiwuya采纳,获得10
3分钟前
葫芦芦芦完成签到 ,获得积分10
3分钟前
自信花生发布了新的文献求助10
3分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827345
求助须知:如何正确求助?哪些是违规求助? 3369656
关于积分的说明 10456661
捐赠科研通 3089290
什么是DOI,文献DOI怎么找? 1699846
邀请新用户注册赠送积分活动 817520
科研通“疑难数据库(出版商)”最低求助积分说明 770251