Learning-Based Optimal Cooperative Formation Tracking Control for Multiple UAVs: A Feedforward-Feedback Design Framework

前馈 控制理论(社会学) 反推 计算机科学 跟踪(教育) 强化学习 控制工程 最优控制 跟踪误差 控制器(灌溉) 控制(管理) 自适应控制 数学优化 工程类 人工智能 数学 教育学 生物 农学 心理学
作者
Boyang Zhang,Maolong Lv,Shaohua Cui,Xiangwei Bu,Ju H. Park
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tase.2023.3322028
摘要

Notwithstanding the successful design of state-of-the-art cooperative control protocols to accomplish formation tracking for multiple unmanned aerial vehicles (UAVs), the assurance of performance optimality cannot be guaranteed in the face of complex disturbances affecting these multi-UAV systems. In order to surmount this challenge, this research endeavor aims to establish a feedforward-feedback learning-based optimal control methodology to facilitate cooperative UAV formation tracking in the presence of intricate disturbances. To be more precise, by leveraging backstepping-based feedback control, the problem of UAV formation tracking is transformed into an equivalent optimal regulation problem. Consequently, a learning-based feedforward control scheme is devised, wherein the cooperative policy iteration algorithm is formulated based on a two-player zero-sum game. The critic-only echo state network (ESN) is employed to approximate the optimal feedforward control policies, with the inclusion of an online adaptive tuning law and compensation terms to alleviate the persistence of excitation condition and eliminate the need for an initial admissible control. As a result, the closed-loop stability is guaranteed in terms of uniformly ultimately boundedness for tracking errors and ESN weights. Note to Practitioners —In real-world scenarios, the flight of multiple UAVs is invariably affected by intricate disturbances, resulting in compromised tracking precision. There is an urgent need to enhance resistance to disturbances and ensure optimal performance for cooperative formation tracking of multiple UAVs. Beyond the capabilities of model-based controllers, the integration of reinforcement learning has shown promise in achieving robust control actions. By introducing the cooperative policy iteration algorithm based on a two-player zero-sum game, the tracking performances of UAV formation can be further optimized. In order to facilitate the practical application of reinforcement learning in UAV systems, our proposed algorithm addresses the persistency of excitation condition by incorporating innovative compensation terms into the ESN tuning law. Furthermore, we resolve the requirement for initial admissible control by introducing a novel piecewise compensation term into the ESN tuning law, which is based on a newly proposed Lyapunov function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
white完成签到,获得积分10
3秒前
饱满的棒棒糖完成签到 ,获得积分10
3秒前
6秒前
ZZZZZ完成签到,获得积分10
8秒前
多多发布了新的文献求助10
10秒前
鲲鹏完成签到 ,获得积分10
22秒前
桐桐应助科研通管家采纳,获得10
23秒前
饱满的平松完成签到,获得积分10
28秒前
魅力二锦完成签到 ,获得积分10
35秒前
叶痕TNT完成签到 ,获得积分10
40秒前
迷你的夜天完成签到 ,获得积分10
44秒前
raoxray完成签到 ,获得积分10
44秒前
DD完成签到 ,获得积分10
47秒前
莹yy完成签到 ,获得积分10
47秒前
49秒前
liuyq0501完成签到,获得积分0
58秒前
胖胖完成签到 ,获得积分0
59秒前
陆黑暗完成签到 ,获得积分10
1分钟前
坦率的从波完成签到 ,获得积分10
1分钟前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
清秀的之桃完成签到 ,获得积分10
1分钟前
代扁扁完成签到 ,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
吨吨完成签到,获得积分10
1分钟前
阿尔法贝塔完成签到 ,获得积分10
1分钟前
ZZzz完成签到 ,获得积分10
1分钟前
标致幻然完成签到 ,获得积分10
1分钟前
喜悦的板凳完成签到 ,获得积分10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
舒心的青槐完成签到 ,获得积分10
1分钟前
Meima完成签到,获得积分10
1分钟前
hansa完成签到,获得积分0
1分钟前
ROMANTIC完成签到 ,获得积分10
1分钟前
畅快的念烟完成签到,获得积分10
1分钟前
1分钟前
HH1202完成签到 ,获得积分10
1分钟前
Joker完成签到,获得积分10
1分钟前
牛奶面包完成签到 ,获得积分10
1分钟前
梓歆完成签到 ,获得积分10
1分钟前
墨墨完成签到 ,获得积分10
1分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819982
求助须知:如何正确求助?哪些是违规求助? 3362872
关于积分的说明 10418969
捐赠科研通 3081206
什么是DOI,文献DOI怎么找? 1695017
邀请新用户注册赠送积分活动 814815
科研通“疑难数据库(出版商)”最低求助积分说明 768539