An Aptamer‐Based Nanoflow Cytometry Method for the Molecular Detection and Classification of Ovarian Cancers through Profiling of Tumor Markers on Small Extracellular Vesicles

卵巢癌 细胞外小泡 生物 适体 卵巢肿瘤 分子生物学 计算生物学 癌症研究 癌症 细胞生物学 遗传学
作者
Jin Li,Yingying Li,Qin Li,Lu Sun,Qingqing Tan,Liyan Zheng,Ye Lu,Jianqing Zhu,Fengli Qu,Weihong Tan
出处
期刊:Angewandte Chemie [Wiley]
卷期号:63 (4) 被引量:22
标识
DOI:10.1002/anie.202314262
摘要

Abstract Molecular profiling of protein markers on small extracellular vesicles (sEVs) is a promising strategy for the precise detection and classification of ovarian cancers. However, this strategy is challenging owing to the lack of simple and practical detection methods. In this work, using an aptamer‐based nanoflow cytometry (nFCM) detection strategy, a simple and rapid method for the molecular profiling of multiple protein markers on sEVs was developed. The protein markers can be easily labeled with aptamer probes and then rapidly profiled by nFCM. Seven cancer‐associated protein markers, including CA125, STIP1, CD24, EpCAM, EGFR, MUC1, and HER2, on plasma sEVs were profiled for the molecular detection and classification of ovarian cancers. Profiling these seven protein markers enabled the precise detection of ovarian cancer with a high accuracy of 94.2 %. In addition, combined with machine learning algorithms, such as linear discriminant analysis (LDA) and random forest (RF), the molecular classifications of ovarian cancer cell lines and subtypes were achieved with overall accuracies of 82.9 % and 55.4 %, respectively. Therefore, this simple, rapid, and non‐invasive method exhibited considerable potential for the auxiliary diagnosis and molecular classification of ovarian cancers in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩帅完成签到,获得积分10
刚刚
刚刚
小帆同学发布了新的文献求助10
刚刚
心灵美灵凡完成签到,获得积分10
1秒前
Andrea0899发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
Jeremy发布了新的文献求助10
4秒前
4秒前
4秒前
CX330发布了新的文献求助30
5秒前
5秒前
昆工应助aIARLAE采纳,获得10
5秒前
5秒前
6秒前
NexusExplorer应助友好真采纳,获得10
6秒前
6秒前
影默完成签到,获得积分10
6秒前
隐形曼青应助我先睡了采纳,获得10
6秒前
6秒前
大模型应助快乐婴采纳,获得10
6秒前
123发布了新的文献求助10
7秒前
7秒前
嘻嘻完成签到,获得积分10
7秒前
meredith0571完成签到,获得积分10
7秒前
7秒前
开心枫完成签到,获得积分10
8秒前
8秒前
melon发布了新的文献求助10
8秒前
CNS发布了新的文献求助10
8秒前
韩帅发布了新的文献求助10
8秒前
星辰大海应助阳光的天与采纳,获得10
9秒前
9秒前
DA发布了新的文献求助10
10秒前
聪慧的诗兰完成签到,获得积分10
10秒前
汉堡包应助杨耑耑采纳,获得10
10秒前
Katherine完成签到,获得积分10
10秒前
Ryu发布了新的文献求助10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4226190
求助须知:如何正确求助?哪些是违规求助? 3759506
关于积分的说明 11817967
捐赠科研通 3420816
什么是DOI,文献DOI怎么找? 1877492
邀请新用户注册赠送积分活动 930786
科研通“疑难数据库(出版商)”最低求助积分说明 838785