亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fine Classification of Urban Tree Species Based on UAV-Based RGB Imagery and LiDAR Data

激光雷达 遥感 航空影像 RGB颜色模型 卫星图像 环境科学 树(集合论) 地理 地图学 计算机科学 人工智能 数学 数学分析
作者
Jingru Wu,Qixia Man,Xinming Yang,Pinliang Dong,Xiaotong Ma,Chunhui Liu,Changyin Han
出处
期刊:Forests [Multidisciplinary Digital Publishing Institute]
卷期号:15 (2): 390-390 被引量:1
标识
DOI:10.3390/f15020390
摘要

Rapid and accurate classification of urban tree species is crucial for the protection and management of urban ecology. However, tree species classification remains a great challenge because of the high spatial heterogeneity and biodiversity. Addressing this challenge, in this study, unmanned aerial vehicle (UAV)-based high-resolution RGB imagery and LiDAR data were utilized to extract seven types of features, including RGB spectral features, texture features, vegetation indexes, HSV spectral features, HSV texture features, height feature, and intensity feature. Seven experiments involving different feature combinations were conducted to classify 10 dominant tree species in urban areas with a Random Forest classifier. Additionally, Plurality Filling was applied to further enhance the accuracy of the results as a post-processing method. The aim was to explore the potential of UAV-based RGB imagery and LiDAR data for tree species classification in urban areas, as well as evaluate the effectiveness of the post-processing method. The results indicated that, compared to using RGB imagery alone, the integrated LiDAR and RGB data could improve the overall accuracy and the Kappa coefficient by 18.49% and 0.22, respectively. Notably, among the features based on RGB, the HSV and its texture features contribute most to the improvement of accuracy. The overall accuracy and Kappa coefficient of the optimal feature combination could achieve 73.74% and 0.70 with the Random Forest classifier, respectively. Additionally, the Plurality Filling method could increase the overall accuracy by 11.76%, which could reach 85.5%. The results of this study confirm the effectiveness of RGB imagery and LiDAR data for urban tree species classification. Consequently, these results could provide a valuable reference for the precise classification of tree species using UAV remote sensing data in urban areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
6秒前
7秒前
9秒前
11秒前
li完成签到,获得积分20
15秒前
东方欲晓完成签到 ,获得积分0
17秒前
li发布了新的文献求助10
18秒前
21秒前
传奇3应助li采纳,获得10
29秒前
卡酷一完成签到 ,获得积分10
33秒前
嗨Honey完成签到 ,获得积分10
34秒前
剑指东方是为谁应助adam采纳,获得10
40秒前
41秒前
1分钟前
SQ完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
斯寜应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
qq发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lll发布了新的文献求助10
1分钟前
兴奋的若菱完成签到 ,获得积分10
1分钟前
1分钟前
lll完成签到,获得积分10
1分钟前
haojiaolv完成签到,获得积分10
1分钟前
snah完成签到 ,获得积分10
1分钟前
不去明知山完成签到 ,获得积分10
1分钟前
2分钟前
末世完成签到,获得积分10
2分钟前
rpe完成签到,获得积分10
2分钟前
2分钟前
lvsehx发布了新的文献求助10
2分钟前
2分钟前
夹心吉吉完成签到 ,获得积分10
2分钟前
所所应助RASH采纳,获得10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359930
捐赠科研通 3068677
什么是DOI,文献DOI怎么找? 1685232
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022