稳健性(进化)
跟踪(教育)
各向异性
生物系统
方位角
噪音(视频)
极地的
计算机科学
深度学习
方向(向量空间)
粒子(生态学)
物理
纳米技术
人工智能
材料科学
光学
化学
数学
生物
几何学
生物化学
基因
教育学
图像(数学)
生态学
心理学
天文
作者
Dongliang Song,Xin Zhang,Baoyun Li,Yuanfang Sun,Huihui Mei,Xiaojuan Cheng,Jieming Li,Xiaodong Cheng,Ning Fang
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-02-28
卷期号:24 (10): 3082-3088
被引量:4
标识
DOI:10.1021/acs.nanolett.3c04870
摘要
The translational and rotational dynamics of anisotropic optical nanoprobes revealed in single particle tracking (SPT) experiments offer molecular-level information about cellular activities. Here, we report an automated high-speed multidimensional SPT system integrated with a deep learning algorithm for tracking the 3D orientation of anisotropic gold nanoparticle probes in living cells with high localization precision (<10 nm) and temporal resolution (0.9 ms), overcoming the limitations of rotational tracking under low signal-to-noise ratio (S/N) conditions. This method can resolve the azimuth (0°–360°) and polar angles (0°–90°) with errors of less than 2° on the experimental and simulated data under S/N of ∼4. Even when the S/N approaches the limit of 1, this method still maintains better robustness and noise resistance than the conventional pattern matching methods. The usefulness of this multidimensional SPT system has been demonstrated with a study of the motions of cargos transported along the microtubules within living cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI