Thermal Radiation Bias Correction for Infrared Images Using Huber Function-Based Loss

红外线的 遥感 功能(生物学) 辐射 计算机科学 光学 物理 地质学 进化生物学 生物
作者
Jun Xie,Lingfei Song,Hua Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3370966
摘要

Limited by the imaging mechanism, thermal radiation emitted from infrared (IR) imaging devices commonly contaminates the detector response to the scene, causing an additive thermal radiation bias at each pixel that dramatically reduces the contrast of the image. This degradation is considered a bias field over the image, impacting the visual perception and subsequent applications. Therefore, eliminating the thermal radiation bias field is an urgent issue. This paper proposes an adaptive thermal radiation bias field correction method using Huber function-based loss, which can adapt to image contents and hence preserve meaningful details while eliminating the bias field. The proposed method introduces the low-order bivariate polynomial surface model to fit the bias field from the observed image precisely. We establish a robust objective function based on the Huber function to estimate parameters of the surface model, which can adaptively switch between the ℓ 1 norm and the ℓ 2 norm-based loss functions according to the image region. Thus, our method not only effectively maintains optimality in flat regions but also improves robustness in edge & texture regions. To balance efficiency and robustness, we propose an adaptive threshold that controls the behavior of the Huber function. For stable convergence, an improved gradient descent strategy is utilized to solve the Huber loss-based objective function with the two-direction fitting and an adjustable step. Both simulated and real experiments against classical and state-of-the-art methods demonstrate the superior performance of the proposed method in improving the contrast and preserving details.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大冰完成签到,获得积分10
刚刚
共享精神应助一沙采纳,获得10
1秒前
兰真纯洁发布了新的文献求助10
3秒前
田様应助秀丽的冬瓜采纳,获得10
3秒前
科研通AI5应助糯米团子采纳,获得10
5秒前
5yy完成签到,获得积分20
8秒前
11秒前
15秒前
15秒前
秀丽的冬瓜完成签到,获得积分10
17秒前
ymX完成签到,获得积分10
18秒前
Tangyartie完成签到 ,获得积分10
18秒前
小金星星完成签到 ,获得积分10
18秒前
nenoaowu完成签到,获得积分10
19秒前
April完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
光轮2000发布了新的文献求助10
25秒前
30秒前
123完成签到,获得积分10
32秒前
Lucas应助李爱笑采纳,获得10
33秒前
shanbaibai发布了新的文献求助100
34秒前
35秒前
ding应助birdy采纳,获得10
35秒前
糯米团子发布了新的文献求助10
36秒前
乖小俏完成签到,获得积分10
39秒前
万能图书馆应助参上采纳,获得10
42秒前
天天快乐应助ting采纳,获得10
42秒前
43秒前
无奈皮卡丘完成签到 ,获得积分10
44秒前
糯米团子完成签到,获得积分10
44秒前
鹿子默完成签到,获得积分10
44秒前
44秒前
45秒前
dm11完成签到,获得积分10
47秒前
研友_LJGpan发布了新的文献求助10
47秒前
无聊的老姆完成签到 ,获得积分10
49秒前
夏五鱼发布了新的文献求助10
50秒前
53秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843913
求助须知:如何正确求助?哪些是违规求助? 3386217
关于积分的说明 10544489
捐赠科研通 3107034
什么是DOI,文献DOI怎么找? 1711392
邀请新用户注册赠送积分活动 824081
科研通“疑难数据库(出版商)”最低求助积分说明 774434