Graph Convolutional Networks based short-term load forecasting: Leveraging spatial information for improved accuracy

期限(时间) 计算机科学 图形 人工智能 数据挖掘 理论计算机科学 量子力学 物理
作者
Haris Mansoor,Muhammad Shuzub Gull,Huzaifa Rauf,Inam Ul Hasan Shaikh,Muhammad Khalid,Naveed Arshad
出处
期刊:Electric Power Systems Research [Elsevier]
卷期号:230: 110263-110263 被引量:3
标识
DOI:10.1016/j.epsr.2024.110263
摘要

Accurate short-term load forecasting is vital for the efficient operation of the power sector. The challenge of predicting fine-resolution load, such as weekly load, is compounded by its inherent volatility and stochastic nature. However, forecasting becomes more tractable at higher scales, such as user clusters, where fluctuations are smoothed out. Existing methods focus solely on temporal data and auto-regressive processes for load prediction, disregarding the spatial information inherent in the power grid's graphical structure. This research proposes an innovative approach that integrates spatial and temporal information for short-term load forecasting. A novel technique is introduced to convert load data into a graphical representation, which is then processed by Graph Convolutional Networks (GCN) to capture spatial embeddings. These GCN embeddings, in conjunction with temporal features, are employed for load prediction. Rigorous experimentation employing advanced machine learning and deep learning techniques validates the effectiveness of the proposed approach. The findings reveal that leveraging spatial information through GCN embeddings significantly enhances load forecasting performance, leading to improvements of up to 39% which emphasize the potential of proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rollei应助ada采纳,获得10
刚刚
GF完成签到,获得积分10
1秒前
流夏发布了新的文献求助10
1秒前
诚心醉柳发布了新的文献求助10
2秒前
桐桐应助Niki采纳,获得20
3秒前
骆承坤完成签到,获得积分10
3秒前
stand应助welbeck采纳,获得10
3秒前
Yang发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
X丶2X4完成签到,获得积分10
5秒前
852应助theverve采纳,获得10
5秒前
量子星尘发布了新的文献求助30
5秒前
6秒前
llllll发布了新的文献求助10
6秒前
活力的fang完成签到,获得积分20
6秒前
6秒前
尊敬的笑翠完成签到 ,获得积分10
6秒前
zzcherished完成签到,获得积分10
7秒前
Momomo应助风清扬采纳,获得20
7秒前
8秒前
8秒前
8秒前
8秒前
852应助雨夜星空采纳,获得10
8秒前
邓佩雨发布了新的文献求助10
8秒前
田T完成签到 ,获得积分10
9秒前
9秒前
池洲发布了新的文献求助10
9秒前
十一发布了新的文献求助10
10秒前
金帛心兑完成签到,获得积分10
11秒前
yun完成签到 ,获得积分10
11秒前
韩小陌关注了科研通微信公众号
11秒前
12秒前
在水一方应助Yang采纳,获得10
12秒前
12秒前
眰恦发布了新的文献求助10
12秒前
冷酷尔芙应助向阳而生采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719991
求助须知:如何正确求助?哪些是违规求助? 5258347
关于积分的说明 15290002
捐赠科研通 4869605
什么是DOI,文献DOI怎么找? 2614876
邀请新用户注册赠送积分活动 1564872
关于科研通互助平台的介绍 1522051