亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Controlling surface oxygen vacancies in 3D networked MnO2 based nanocomposites for high performance flexible in-plane micro-supercapacitors

超级电容器 石墨烯 纳米复合材料 材料科学 空位缺陷 纳米技术 储能 化学工程 比表面积 光电子学 化学 电容 电极 工程类 物理化学 结晶学 功率(物理) 催化作用 物理 量子力学 生物化学
作者
Sung Min Wi,Jihong Kim,Sangjun Son,HeeYoung Lim,Yeonsu Park,A‐Rang Jang,Jong Bae Park,Young‐Chul Song,Sangyeon Pak,Young‐Woo Lee
出处
期刊:Applied Surface Science [Elsevier BV]
卷期号:648: 159060-159060 被引量:2
标识
DOI:10.1016/j.apsusc.2023.159060
摘要

The rising demand for portable, flexible, and eco-friendly electronic devices has spurred the development of micro-supercapacitors (mSCs) as compact and versatile energy storage components. Electric double-layer (EDL)-mSCs incorporating graphene electrodes offer swift and reversible charge/discharge processes, making them suitable for sustainable device systems. To greatly enhance the electrochemical performance of mSCs, we present a direct synthesis and fabrication of surface oxygen vacancy-controlled MnO2 with a Faradaic capacitive behavior on a porous graphene electrode with 3D networked framework. Surface oxygen vacancies in MnO2 were created through hydrogen peroxide (H2O2) treatment, which led to an increase in the electrode's conductivity and facilitating electrochemical reactions due to creation of the local electric field at the vacancy sites. We achieved 251 % and 163 % increase in capacitance of surface oxygen vacancy controlled MnO2/graphene nanocomposite electrode compared to the porous graphene electrode and pristine MnO2/graphene electrode, respectively, and exhibited a volumetric energy density of 3.61 Wh/L. Furthermore, the mSCs demonstrated excellent cyclic stability and mechanical flexibility under various strain conditions. This surface oxygen vacancy-controlled MnO2/graphene nanocomposite electrode represents a simple and efficient strategy for high-performance and versatile energy storage components, with potential applications in electronic devices and sustainable energy systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
饼子发布了新的文献求助10
6秒前
22秒前
wanci应助adam采纳,获得10
48秒前
汉堡包应助若离采纳,获得30
54秒前
丘比特应助文继遥采纳,获得10
1分钟前
1分钟前
慕青应助xlxu采纳,获得10
1分钟前
若离发布了新的文献求助30
1分钟前
1分钟前
1分钟前
科研通AI5应助sky采纳,获得10
1分钟前
JHY发布了新的文献求助10
1分钟前
1分钟前
sweets完成签到,获得积分10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
三更笔舞完成签到 ,获得积分10
1分钟前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
1分钟前
adam发布了新的文献求助10
1分钟前
风华正茂完成签到 ,获得积分10
1分钟前
alan完成签到 ,获得积分0
1分钟前
ele_yuki完成签到,获得积分10
1分钟前
bkagyin应助JHY采纳,获得10
1分钟前
lmk完成签到 ,获得积分10
1分钟前
yanzilin完成签到 ,获得积分10
2分钟前
vagary完成签到,获得积分10
2分钟前
Dasha完成签到,获得积分10
2分钟前
zmx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
文继遥发布了新的文献求助10
2分钟前
adam完成签到 ,获得积分10
2分钟前
饼子发布了新的文献求助10
2分钟前
许安发布了新的文献求助10
2分钟前
顺利山柏完成签到 ,获得积分10
2分钟前
sky完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186254
求助须知:如何正确求助?哪些是违规求助? 4371512
关于积分的说明 13612260
捐赠科研通 4223952
什么是DOI,文献DOI怎么找? 2316748
邀请新用户注册赠送积分活动 1315371
关于科研通互助平台的介绍 1264471