Integrating artificial intelligence in investigating magneto-bioconvection flow of oxytactic microorganisms and nano-enhanced phase change material in H-type cavity

瑞利数 材料科学 纳米流体 机械 刘易斯数 相变材料 瑞利散射 自然对流 热力学 热的 传热 纳米技术 纳米颗粒 物理 传质 光学
作者
Shafqat Hussain,Abdelraheem M. Aly,Noura Alsedias,Andaç Batur Çolak
出处
期刊:Thermal science and engineering progress [Elsevier]
卷期号:49: 102497-102497 被引量:14
标识
DOI:10.1016/j.tsep.2024.102497
摘要

Nano-enhanced phase change materials is an effective way to improve the thermal characteristics and to minimize energy consumption. The bioconvection flow of nano-enhanced phase change materials is gaining more attention in recent investigations due to its significant applications in engineering and medical sciences. The present study aims to numerically explore magneto-bioconvection flow of nano-enhanced phase change materials in H-type cavity including oxytactic microorganisms. The cavity is constantly heated from the left and a right wall is maintained at cold temperature. The major focus of the current investigation is analyzing the flow and thermal features of the suspension of nano-enhanced phase change materials and a host fluid. The governing system is reduced to the dimensionless form by applying the appropriate transformation. Impact of pertinent parameters, porosity, cavity aspect ratio, Darcy, Hartmann, Lewis, Rayleigh, bioconvection Rayleigh numbers, radiation parameter, and Péclet number on bioconvection flow of oxytactic microorganisms in H-type cavity has been analyzed. Six various artificial neural network models are explored in order to estimate critical parameters with an artificial intelligence approach. It is found that the variations of a cavity aspect ratio are enhancing the bioconvection flow and phase change material. Increasing Hartmann number reduces the nanofluid velocity and distributions of oxygen and microorganisms. The Rayleigh and bioconvection Rayleigh numbers are playing an importance role in enhancing bioconvection flow and varying phase change material.As Ha increases from 10 to 100, at γ=900, there is a 1.67% decrease in the values of Nuavg and a 0.247% increase in Shavg. Among the study findings, the developed artificial neural networks can predict each parameter with high accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南岸娜娜发布了新的文献求助10
刚刚
浮游应助诗歌节公社采纳,获得10
刚刚
1秒前
1秒前
1秒前
四夕发布了新的文献求助10
1秒前
跳跃夜白完成签到 ,获得积分10
2秒前
nina发布了新的文献求助10
3秒前
WQ发布了新的文献求助10
3秒前
机智的板栗完成签到,获得积分10
3秒前
天天快乐应助瘦瘦的羞花采纳,获得10
3秒前
愉快芜榆发布了新的文献求助30
4秒前
4秒前
SM完成签到,获得积分20
5秒前
mira发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
6666发布了新的文献求助10
7秒前
8秒前
yyy完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
潇洒夜安完成签到,获得积分10
9秒前
万能图书馆应助田国兵采纳,获得10
9秒前
小馒头完成签到,获得积分10
10秒前
大模型应助WUWEI采纳,获得10
10秒前
tao完成签到 ,获得积分10
10秒前
哈哈哈发布了新的文献求助10
12秒前
洪雨欣发布了新的文献求助10
12秒前
科目三应助sanmumu采纳,获得10
13秒前
14秒前
Catalina_S应助王一采纳,获得10
14秒前
shellyAPTX4869完成签到,获得积分10
14秒前
15秒前
CipherSage应助小文子采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265