CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (6): 2346-2355 被引量:28
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨xiao完成签到,获得积分10
刚刚
老北京发布了新的文献求助10
刚刚
汉堡包应助开放的凡梦采纳,获得10
1秒前
straw关注了科研通微信公众号
1秒前
2秒前
今后应助花海采纳,获得10
3秒前
语小发布了新的文献求助10
3秒前
4秒前
小哈发布了新的文献求助20
4秒前
哆啦十七发布了新的文献求助10
6秒前
mmm完成签到,获得积分10
7秒前
孤独如曼发布了新的文献求助10
8秒前
mmm发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
gzj完成签到,获得积分10
11秒前
FashionBoy应助激流勇进wb采纳,获得10
11秒前
丘比特应助yo一天采纳,获得10
11秒前
我不ins你_完成签到 ,获得积分10
11秒前
12秒前
共享精神应助55155255采纳,获得10
13秒前
Tergel完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
Tergel发布了新的文献求助10
18秒前
执着谷梦完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
ZSJ完成签到,获得积分10
20秒前
PhD_Kang发布了新的文献求助10
20秒前
混吃等死研究生完成签到,获得积分10
20秒前
straw发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497