CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2346-2355 被引量:9
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuqiu完成签到 ,获得积分10
2秒前
msd2phd完成签到,获得积分10
4秒前
4秒前
5秒前
8秒前
白开水发布了新的文献求助10
9秒前
无非一念发布了新的文献求助10
11秒前
科研废物发布了新的文献求助10
13秒前
Lqiang完成签到,获得积分10
15秒前
无非一念完成签到,获得积分10
17秒前
希望天下0贩的0应助keke采纳,获得10
22秒前
27秒前
28秒前
30秒前
30秒前
Tracy.完成签到,获得积分10
31秒前
白开水完成签到,获得积分10
33秒前
93发布了新的文献求助30
35秒前
NorthWang完成签到,获得积分10
43秒前
43秒前
wenbo完成签到,获得积分0
44秒前
46秒前
46秒前
48秒前
zzq发布了新的文献求助10
49秒前
50秒前
废物自救发布了新的文献求助10
51秒前
乐观短靴发布了新的文献求助10
54秒前
立军发布了新的文献求助200
54秒前
yym完成签到,获得积分10
54秒前
科研废物完成签到,获得积分10
56秒前
56秒前
56秒前
58秒前
小王好饿完成签到 ,获得积分10
59秒前
WYN发布了新的文献求助10
1分钟前
气急败坏的卡尔王完成签到 ,获得积分10
1分钟前
糕糕发布了新的文献求助10
1分钟前
史小霜发布了新的文献求助10
1分钟前
是氓呀发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780355
求助须知:如何正确求助?哪些是违规求助? 3325680
关于积分的说明 10223949
捐赠科研通 3040823
什么是DOI,文献DOI怎么找? 1669024
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758648