CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2346-2355 被引量:21
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HQZ完成签到,获得积分10
1秒前
唐新惠完成签到 ,获得积分10
2秒前
寻找组织应助枯藤老柳树采纳,获得10
2秒前
汉堡包应助内向花卷采纳,获得10
3秒前
冷傲老头发布了新的文献求助10
3秒前
ADcal完成签到 ,获得积分10
3秒前
55发布了新的文献求助30
4秒前
儒雅完成签到 ,获得积分10
4秒前
雲樂完成签到 ,获得积分10
5秒前
z7486完成签到,获得积分10
5秒前
5秒前
科研通AI2S应助潇潇雨歇采纳,获得10
5秒前
zhou国兵完成签到,获得积分20
5秒前
JamesPei应助Roy采纳,获得10
5秒前
害羞的傲霜完成签到,获得积分10
7秒前
王秀妍发布了新的文献求助10
8秒前
Cynthia完成签到 ,获得积分10
8秒前
怀玉发布了新的文献求助10
9秒前
pingwu完成签到,获得积分10
9秒前
SciGPT应助zhou国兵采纳,获得10
9秒前
李佳钰发布了新的文献求助10
10秒前
10秒前
学习的甜玉米完成签到,获得积分10
10秒前
无奈曼云完成签到,获得积分10
10秒前
生如夏花完成签到,获得积分10
12秒前
还单身的心情完成签到 ,获得积分10
13秒前
lxb完成签到,获得积分10
14秒前
上官若男应助科研通管家采纳,获得30
15秒前
iNk应助科研通管家采纳,获得20
15秒前
ephore应助科研通管家采纳,获得150
15秒前
无极微光应助科研通管家采纳,获得10
15秒前
嗯呢嗯呢应助科研通管家采纳,获得10
15秒前
cw发布了新的文献求助10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Chirality Second Edition 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4975555
求助须知:如何正确求助?哪些是违规求助? 4229979
关于积分的说明 13173852
捐赠科研通 4020015
什么是DOI,文献DOI怎么找? 2199448
邀请新用户注册赠送积分活动 1211980
关于科研通互助平台的介绍 1128020