CEMRI-Based Quantification of Intratumoral Heterogeneity for Predicting Aggressive Characteristics of Hepatocellular Carcinoma Using Habitat Analysis: Comparison and Combination of Deep Learning

肝细胞癌 接收机工作特性 磁共振成像 曲线下面积 人工智能 医学 放射科 计算机科学 核医学 内科学 药代动力学
作者
Haifeng Liu,Min Wang,Yujie Lu,Qing Wang,Yang Lu,Fei Xing,Wei Xing
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (6): 2346-2355 被引量:16
标识
DOI:10.1016/j.acra.2023.11.024
摘要

Highlights•Habitat analysis provides a quantitative measurement of intratumoral heterogeneity for predicting aggressive characteristics in HCC.•Both the ITH and DL models were important for determining MVI and pHCC.•The fusion model combining ITH and DL features achieved the highest AUC value for predicting MVI and pHCC.AbstractRationale and ObjectivesTo explore both an intratumoral heterogeneity (ITH) model based on habitat analysis and a deep learning (DL) model based on contrast-enhanced magnetic resonance imaging (CEMRI) and validate its efficiency for predicting microvascular invasion (MVI) and pathological differentiation in hepatocellular carcinoma (HCC).MethodsCEMRI images were retrospectively obtained from 277 HCCs in 265 patients. Habitat analysis and DL features were extracted from the CEMRI images and selected with the least absolute shrinkage and selection operator approach to develop ITH and DL models, respectively, and these robust features were then integrated to design a fusion model for predicting MVI and poorly differentiated HCC (pHCC). The predictive value of the three models was assessed using the area under the receiver operating characteristic curve (AUC).ResultsThe training and validation sets comprised 221 HCCs and 56 HCCs, respectively. The ITH and DL models presented AUC values of (0.90 vs. 0.87) for predicting MVI in the training set, with AUC values of 0.86 and 0.83 in the validation set. The AUC values of the ITH model to predict pHCC were 0.90 and 0.86 in the two sets, respectively; they were 0.84 and 0.80 for the DL model. The fusion model yielded the best performance for predicting MVI and pHCC in the training set (AUC=0.95, 0.90) and in the validation set (AUC=0.89, 0.87), respectively.ConclusionA fusion model integrating ITH and DL features derived from CEMRI images can serve as an excellent imaging biomarker for predicting aggressive characteristics in HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦在彼岸发布了新的文献求助10
刚刚
柳琰完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
风清扬应助ximei采纳,获得10
2秒前
3秒前
3秒前
sixieryu发布了新的文献求助10
4秒前
五十发布了新的文献求助10
4秒前
ocdspkss完成签到,获得积分10
5秒前
6秒前
7秒前
打打应助Dora采纳,获得10
8秒前
CJX发布了新的文献求助10
8秒前
淡淡的雪完成签到,获得积分10
8秒前
8秒前
21完成签到 ,获得积分10
9秒前
10秒前
LaTeXer给LSH970829的求助进行了留言
10秒前
沐沐溪三清完成签到,获得积分10
10秒前
11秒前
ximei完成签到,获得积分10
12秒前
13秒前
王木木发布了新的文献求助10
13秒前
火山羊完成签到,获得积分10
14秒前
yyygc发布了新的文献求助10
14秒前
LIJIngcan完成签到 ,获得积分10
15秒前
西门子云完成签到,获得积分10
15秒前
15秒前
iNk应助机智采纳,获得20
16秒前
16秒前
16秒前
思源应助五十采纳,获得10
16秒前
16秒前
11完成签到,获得积分10
18秒前
蓝桉发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助负责的方盒采纳,获得30
20秒前
21秒前
ZZ完成签到,获得积分10
21秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4211987
求助须知:如何正确求助?哪些是违规求助? 3746077
关于积分的说明 11787368
捐赠科研通 3414081
什么是DOI,文献DOI怎么找? 1873448
邀请新用户注册赠送积分活动 927878
科研通“疑难数据库(出版商)”最低求助积分说明 837298