清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning and prediction study on heat transfer of supercritical CO2 in pseudo-critical zone

超临界流体 传热 材料科学 工艺工程 机械工程 石油工程 环境科学 工程类 热力学 物理
作者
Zhe-Xi Wen,Jingxiang Wu,Xinde Cao,Jiaqi Cheng,Shuaishuai Wang,Qing Li
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:: 122630-122630 被引量:1
标识
DOI:10.1016/j.applthermaleng.2024.122630
摘要

The utilization of supercritical carbon dioxide(S-CO2) as a working fluid in energy conversion systems has gained widespread recognition as an efficient and environmentally friendly option. However, accurately predicting the heat transfer process is still challenging due to the significant variation of thermophysical properties within the pseudo-critical zone. The accurate prediction of the S-CO2 heat transfer process is of utmost importance for the design of heat exchangers and the safe operation of the system. Aiming at the current problems of high experimental cost and long numerical simulation time, machine learning is adopted in this paper to predict the heat transfer characteristics of S-CO2 in this temperature region. In this paper, the heat transfer process of S-CO2 flowing upward in a circular tube under heating conditions is taken as the research object, and a total of 11,032 sets of experimental data samples in the open literature are collected. Four machine learning models, namely, Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machines (SVR), and Artificial Neural Networks (ANN) are trained by taking mass flow rate, wall heat flux, pressure, fluid enthalpy, and tube diameter as the input parameters, and wall temperature as the output parameter. The prediction performance of the four machine learning models and the heat transfer correlations were compared. The results show that all four machine learning models have excellent prediction performance, and the ANN model provides the best prediction performance, with an R2 of 0.995 on new data. XGboost and ANN can accurately predict the heat transfer deterioration when the fluid temperature (Tb) approaches the pseudo-critical temperature (Tpc) or over Tpc, yet the accuracy decreases in the region of Tb < Tpc, suggesting that the prediction error is mainly originated in this region. Compared with the existing heat transfer correlations, the prediction accuracy of the ANN model obtained from the training in this paper is higher. The present study further elucidated the feasibility and accuracy of utilizing an ANN model for predicting the S-CO2 heat transfer process. A trained ANN model is a useful tool that can be directly applied to system design and heat exchanger design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XX完成签到 ,获得积分10
1分钟前
XX关注了科研通微信公众号
1分钟前
Ivy应助ukz37752采纳,获得20
1分钟前
foyefeng完成签到 ,获得积分0
1分钟前
细心健柏完成签到 ,获得积分10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
Ivy应助ukz37752采纳,获得20
2分钟前
呆呆的猕猴桃完成签到 ,获得积分10
2分钟前
zhang005on完成签到 ,获得积分10
2分钟前
TOUHOUU完成签到 ,获得积分10
2分钟前
科研通AI5应助义气尔琴采纳,获得10
2分钟前
万能图书馆应助XX采纳,获得10
2分钟前
明理问柳完成签到,获得积分10
2分钟前
拼搏的败完成签到 ,获得积分10
3分钟前
过氧化氢应助科研通管家采纳,获得20
4分钟前
丘比特应助左左采纳,获得10
4分钟前
4分钟前
科2研7通发布了新的文献求助10
4分钟前
4分钟前
脆啵啵马克宝完成签到 ,获得积分10
4分钟前
左左发布了新的文献求助10
4分钟前
Boring完成签到 ,获得积分10
4分钟前
4分钟前
XX发布了新的文献求助10
4分钟前
今后应助左左采纳,获得10
5分钟前
地瓜地瓜完成签到 ,获得积分10
5分钟前
斯文的芹菜完成签到 ,获得积分10
5分钟前
1437594843完成签到 ,获得积分10
5分钟前
xn201120完成签到 ,获得积分10
5分钟前
可爱邓邓完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
Ava应助ALBRAHEEIBRAHIM采纳,获得10
6分钟前
习月阳完成签到,获得积分10
6分钟前
LZQ完成签到,获得积分0
6分钟前
7分钟前
Glitter完成签到 ,获得积分10
7分钟前
7分钟前
森森发布了新的文献求助10
7分钟前
高分求助中
中华人民共和国出版史料 4 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845559
求助须知:如何正确求助?哪些是违规求助? 3387836
关于积分的说明 10550653
捐赠科研通 3108452
什么是DOI,文献DOI怎么找? 1712830
邀请新用户注册赠送积分活动 824508
科研通“疑难数据库(出版商)”最低求助积分说明 774877