亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BINDTI: A bi-directional Intention network for drug-target interaction identification based on attention mechanisms

药物数据库 鉴定(生物学) 计算机科学 图形 药物发现 可视化 化学信息学 机器学习 注意力网络 卷积神经网络 药物靶点 模式识别(心理学) 人工智能 药品 生物信息学 理论计算机科学 医学 植物 生物 精神科 药理学
作者
Lihong Peng,Xin Liu,Yang Long,Longlong Liu,Zongzheng Bai,Min Chen,Xu Lu,Libo Nie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:17
标识
DOI:10.1109/jbhi.2024.3375025
摘要

The identification of drug-target interactions (DTIs) is an essential step in drug discovery. In vitro experimental methods are expensive, laborious, and time-consuming. Deep learning has witnessed promising progress in DTI prediction. However, how to precisely represent drug and protein features is a major challenge for DTI prediction. Here, we developed an end-to-end DTI identification framework called BINDTI based on bi-directional Intention network. First, drug features are encoded with graph convolutional networks based on its 2D molecular graph obtained by its SMILES string. Next, protein features are encoded based on its amino acid sequence through a mixed model called ACmix, which integrates self-attention mechanism and convolution. Third, drug and target features are fused through bi-directional Intention network, which combines Intention and multi-head attention. Finally, unknown drug-target (DT) pairs are classified through multilayer perceptron based on the fused DT features. The results demonstrate that BINDTI greatly outperformed four baseline methods (i.e., CPI-GNN, TransfomerCPI, MolTrans, and IIFDTI) on the BindingDB, BioSNAP, DrugBank, and Human datasets. More importantly, it was more appropriate to predict new DTIs than the four baseline methods on imbalanced datasets. Ablation experimental results elucidated that both bi-directional Intention and ACmix could greatly advance DTI prediction. The fused feature visualization and case studies manifested that the predicted results by BINDTI were basically consistent with the true ones. We anticipate that the proposed BINDTI framework can find new low-cost drug candidates, improve drugs' virtual screening, and further facilitate drug repositioning as well as drug discovery. BINDTI is publicly available at https://github.com/plhhnu/BINDTI .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷茫的一代完成签到,获得积分10
4秒前
7秒前
dabai完成签到 ,获得积分20
30秒前
38秒前
Hello应助dabai采纳,获得10
39秒前
万金油完成签到 ,获得积分10
1分钟前
1分钟前
玛琳卡迪马完成签到,获得积分10
2分钟前
张可完成签到 ,获得积分10
2分钟前
上课就是看见完成签到,获得积分10
2分钟前
林利芳完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
深情访文完成签到,获得积分10
3分钟前
3分钟前
可千万不要躺平呀完成签到,获得积分10
4分钟前
研友_8y2G0L完成签到,获得积分10
4分钟前
陈一一完成签到 ,获得积分10
5分钟前
汉堡包应助英勇念云采纳,获得10
5分钟前
5分钟前
6分钟前
英勇念云发布了新的文献求助10
6分钟前
所所应助懒羊羊大王采纳,获得10
7分钟前
我是老大应助英勇念云采纳,获得10
7分钟前
自强不息完成签到 ,获得积分10
7分钟前
7分钟前
英勇念云发布了新的文献求助10
8分钟前
8分钟前
BBQ发布了新的文献求助10
8分钟前
8分钟前
Kevin完成签到,获得积分10
8分钟前
8分钟前
BBQ完成签到,获得积分20
9分钟前
传奇3应助科研通管家采纳,获得10
9分钟前
实力不允许完成签到 ,获得积分10
9分钟前
醋溜荧光大蒜完成签到 ,获得积分10
10分钟前
Nemo发布了新的文献求助30
12分钟前
发个15分的完成签到 ,获得积分10
12分钟前
tutu完成签到,获得积分10
12分钟前
Nemo完成签到,获得积分10
12分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830461
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475411
捐赠科研通 3092608
什么是DOI,文献DOI怎么找? 1702165
邀请新用户注册赠送积分活动 818806
科研通“疑难数据库(出版商)”最低求助积分说明 771093