BINDTI: A Bi-Directional Intention Network for Drug-Target Interaction Identification Based on Attention Mechanisms

药物数据库 鉴定(生物学) 计算机科学 图形 药物发现 可视化 化学信息学 机器学习 注意力网络 卷积神经网络 药物靶点 模式识别(心理学) 人工智能 药品 生物信息学 理论计算机科学 医学 生物 药理学 精神科 植物
作者
Lihong Peng,Xin Liu,Yang Long,Longlong Liu,Zongzheng Bai,Min Chen,Xu Lu,Libo Nie
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (3): 1602-1612 被引量:44
标识
DOI:10.1109/jbhi.2024.3375025
摘要

The identification of drug-target interactions (DTIs) is an essential step in drug discovery. In vitro experimental methods are expensive, laborious, and time-consuming. Deep learning has witnessed promising progress in DTI prediction. However, how to precisely represent drug and protein features is a major challenge for DTI prediction. Here, we developed an end-to-end DTI identification framework called BINDTI based on bi-directional Intention network. First, drug features are encoded with graph convolutional networks based on its 2D molecular graph obtained by its SMILES string. Next, protein features are encoded based on its amino acid sequence through a mixed model called ACmix, which integrates self-attention mechanism and convolution. Third, drug and target features are fused through bi-directional Intention network, which combines Intention and multi-head attention. Finally, unknown drug-target (DT) pairs are classified through multilayer perceptron based on the fused DT features. The results demonstrate that BINDTI greatly outperformed four baseline methods (i.e., CPI-GNN, TransfomerCPI, MolTrans, and IIFDTI) on the BindingDB, BioSNAP, DrugBank, and Human datasets. More importantly, it was more appropriate to predict new DTIs than the four baseline methods on imbalanced datasets. Ablation experimental results elucidated that both bi-directional Intention and ACmix could greatly advance DTI prediction. The fused feature visualization and case studies manifested that the predicted results by BINDTI were basically consistent with the true ones. We anticipate that the proposed BINDTI framework can find new low-cost drug candidates, improve drugs' virtual screening, and further facilitate drug repositioning as well as drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
稳重茹嫣完成签到,获得积分20
4秒前
研友_5Z4ZA5完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
Jasper应助FOX采纳,获得10
6秒前
斯文败类应助FOX采纳,获得30
6秒前
WWWXM发布了新的文献求助10
6秒前
充电宝应助Lingmei采纳,获得10
8秒前
大力不弱发布了新的文献求助10
8秒前
呼呼哈哈完成签到,获得积分10
8秒前
忐忑的以旋完成签到,获得积分10
8秒前
6666应助polymer采纳,获得10
9秒前
10秒前
开花发布了新的文献求助10
10秒前
烟花应助FIZZ采纳,获得10
10秒前
双人余完成签到 ,获得积分10
11秒前
12秒前
13秒前
14秒前
15秒前
16秒前
123发布了新的文献求助10
16秒前
机灵的雨文完成签到,获得积分10
16秒前
共享精神应助大力不弱采纳,获得10
17秒前
lixiao完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
21秒前
红糖发糕发布了新的文献求助10
21秒前
22秒前
23秒前
代茜蕾完成签到,获得积分10
24秒前
852应助lucky采纳,获得10
25秒前
BowieHuang驳回了tt应助
26秒前
NexusExplorer应助tcheng采纳,获得10
27秒前
HAOS发布了新的文献求助10
27秒前
路人甲完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618333
求助须知:如何正确求助?哪些是违规求助? 4703175
关于积分的说明 14921639
捐赠科研通 4757117
什么是DOI,文献DOI怎么找? 2550058
邀请新用户注册赠送积分活动 1512894
关于科研通互助平台的介绍 1474290