Leveraging noise and contrast simulation for the automatic quality control of routine clinical T1-weighted brain MRI

计算机科学 人工智能 噪音(视频) 对比度(视觉) 计算机视觉 质量(理念) 图像质量 模式识别(心理学) 机器学习 图像(数学) 哲学 认识论
作者
Sophie Loizillon,Stéphane Mabille,Simona Bottani,Yannick Jacob,Aurélien Maire,Sébastian Ströer,Didier Dormont,Olivier Colliot,Ninon Burgos
标识
DOI:10.1117/12.3005781
摘要

The recent advent of clinical data warehouses (CDWs) has facilitated the sharing of very large volumes of medical data for research purposes. MRIs can be affected by various artefacts such as motion, noise or poor contrast that can severely degrade the overall quality of an image. In CDWs, a large amount of MRIs are unusable because corrupted by these diverse artefacts. Given the huge number of MRIs present in CDWs, manually detecting these artefacts becomes an impractical task. Therefore, it is necessary to develop an automated tool that can efficiently identify and exclude corrupted images. We previously proposed an approach for the detection of motion artefacts in 3D T1-weighted brain MRIs. In this paper, we propose to extend our work to two other types of artefacts: poor contrast and noise. We rely on a transfer learning approach, which leverages synthetic artefact generation, and comprises two steps: model pre-training on research data using synthetic artefacts, followed by a fine-tuning step, where we generalise the pre-trained models to clinical routine data relying on the manual labelling of 5000 images. The main objectives of our study were two-fold: to be able to exclude images with severe artefacts and to detect moderate artefacts. Our approach excelled in meeting the first objective, achieving a balanced accuracy of over 84% for the detection of severe noise and very poor contrast, which closely matched the performance of human annotators. Nevertheless, performance in the pursuit of the second objective was less satisfactory and inferior to that of the human annotators. Overall, our framework will be useful for taking full advantage of MRIs present in CDWs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rita_sun1969完成签到,获得积分10
11秒前
风不尽,树不静完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
18秒前
木又完成签到 ,获得积分10
20秒前
彭云峰发布了新的文献求助10
27秒前
su完成签到 ,获得积分10
30秒前
lightman完成签到,获得积分10
35秒前
mayamaya完成签到,获得积分10
46秒前
48秒前
量子星尘发布了新的文献求助10
49秒前
cgs完成签到 ,获得积分10
50秒前
非而者厚应助wangyaofeng采纳,获得10
50秒前
俏皮白云完成签到 ,获得积分10
50秒前
狂野元枫完成签到 ,获得积分10
52秒前
梅赛德斯奔驰完成签到,获得积分10
59秒前
某某完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小稻草人完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Sindy完成签到,获得积分10
1分钟前
Jenny完成签到,获得积分10
1分钟前
shineshine完成签到 ,获得积分10
1分钟前
1分钟前
芷毓_Tian发布了新的文献求助10
1分钟前
1分钟前
彭云峰发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
marc107完成签到,获得积分10
1分钟前
缘分完成签到,获得积分10
1分钟前
zhanghan完成签到,获得积分10
1分钟前
彭云峰完成签到,获得积分10
1分钟前
一汪完成签到,获得积分10
1分钟前
heher完成签到 ,获得积分10
1分钟前
时尚白凡完成签到 ,获得积分10
1分钟前
小小宝完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862505
求助须知:如何正确求助?哪些是违规求助? 3405010
关于积分的说明 10642215
捐赠科研通 3128245
什么是DOI,文献DOI怎么找? 1725257
邀请新用户注册赠送积分活动 830852
科研通“疑难数据库(出版商)”最低求助积分说明 779454