Game of Drones: Intelligent Online Decision Making of Multi-UAV Confrontation

无人机 强化学习 计算机科学 图形 领域(数学分析) 国家(计算机科学) 人工神经网络 人机交互 分布式计算 人工智能 理论计算机科学 算法 生物 遗传学 数学分析 数学
作者
Da Liu,Qun Zong,Xiuyun Zhang,Ruilong Zhang,Liqian Dou,Bailing Tian
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 2086-2100 被引量:6
标识
DOI:10.1109/tetci.2024.3360282
摘要

Due to the characteristics of the small size and low cost of unmanned aerial vehicles (UAVs), Multi-UAV confrontation will play an important role in future wars. The Multi-UAV confrontation game in the air combat environment is investigated in this paper. To truly deduce the confrontation scene, a physics engine is established based on the Multi-UAV Confrontation Scenario (MCS) framework, enabling the real-time interaction between the agent and environment while making the learned strategies more realistic. To form an effective confrontation strategy, the Graph Attention Multi-agent Soft Actor Critic Reinforcement Learning with Target Predicting Network (GA-MASAC-TP Net) is firstly proposed for Multi-UAV confrontation game. The merits lie in that the Multi-UAV trajectory prediction, considering interactions among targets, is incorporated innovatively into the Multi-agent reinforcement learning (MARL), enabling Multi-UAVs to make decisions more accurately based on situation prediction. Specifically, the Soft Actor Critic (SAC) algorithm is extended to the Multi-agent domain and embed with the graph attention neural network into the Actor, Critic network, so the UAV could aggregate the information of the spatial neighbor teammates based on the attention mechanism for better collaboration. The comparative experiment and ablation study demonstrate the effectiveness of the proposed algorithm and the state-of-art performance in the MCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毋宁完成签到,获得积分10
刚刚
Zozo完成签到,获得积分10
1秒前
2秒前
3秒前
淡然冬灵应助轮哥采纳,获得10
3秒前
黑猫警长发布了新的文献求助10
3秒前
拾一完成签到,获得积分10
3秒前
4秒前
火狐狸kc完成签到,获得积分10
4秒前
舒心莫言完成签到,获得积分10
4秒前
54489完成签到,获得积分10
4秒前
沈尔云发布了新的文献求助10
5秒前
领导范儿应助占臻采纳,获得10
5秒前
小橙子完成签到,获得积分10
5秒前
七七四十九完成签到,获得积分10
5秒前
愉快凌晴完成签到,获得积分10
5秒前
5秒前
蠢宝贝发布了新的文献求助10
5秒前
爆米花应助yuhui采纳,获得10
6秒前
小白完成签到,获得积分10
6秒前
pinghu完成签到,获得积分10
6秒前
晒太阳的加菲猫完成签到,获得积分10
8秒前
清脆又晴完成签到,获得积分10
8秒前
原点完成签到,获得积分10
9秒前
香蕉雅香发布了新的文献求助10
9秒前
CodeCraft应助Freddie采纳,获得10
10秒前
JiangSir完成签到,获得积分10
10秒前
英俊的铭应助杪123采纳,获得10
10秒前
10秒前
黑猫警长完成签到,获得积分10
11秒前
青鸟飞鱼完成签到,获得积分10
11秒前
胡杉完成签到,获得积分20
12秒前
ayan发布了新的文献求助10
13秒前
科研通AI5应助蠢宝贝采纳,获得10
13秒前
13秒前
Kuta完成签到,获得积分10
13秒前
神说完成签到,获得积分0
13秒前
14秒前
xx完成签到,获得积分10
14秒前
饱满的海秋完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642