Intelligent Electrochemical Sensors for Precise Identification of Volatile Organic Compounds Enabled by Neural Network Analysis

人工神经网络 鉴定(生物学) 计算机科学 电化学 电化学气体传感器 智能传感器 工艺工程 人工智能 化学 无线传感器网络 工程类 电极 计算机网络 植物 物理化学 生物
作者
Yaonian Li,Xiaozhou Huang,Erin Witherspoon,Zhe Wang,Pei Dong,Qiliang Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (9): 15011-15022 被引量:4
标识
DOI:10.1109/jsen.2024.3374354
摘要

The volatile organic compounds (VOCs) in a wide spectrum of categories were identified as biomarkers in aquatic environments, playing an important role in marine and freshwater ecology and global atmospheric chemistry. VOCs released from biofuel have also attracted increasing attention. Although the importance has been recognized, the portable detection and analysis methods of VOC in aquatic systems have not yet been well developed and understood. In this work, we innovatively proposed an intelligent electrochemical sensing approach to classify and quantify VOCs in solution. Utilizing the cyclic voltammetry (CV) method with an ionic liquid (IL)-based electrolyte, we analyzed $50~\mu \text{L}$ samples of various VOC analytes, including acetic acid (AC), acetone, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethanol, formaldehyde, formic acid, methanol, methyl formate (MF), toluene, and a formaldehyde-methanol mixture, along with deionized water (DI water). The generated voltammograms were subsequently analyzed using our uniquely designed and optimized 1-D convolutional neural network (1D-CNN). This deep-learning algorithm achieved a 99.09% accuracy in VOC classification validated through fivefold cross-validation and demonstrated an impressive 94.4% test accuracy for methanol detection within a $10~\mu \text{L}$ error range. For quantification, the system accurately categorized methanol volumes ranging from 0 to $50~\mu \text{L}$ in $10~\mu \text{L}$ increments, achieving a 98.18% accuracy. A notable linear correlation ( ${R}2$ = 95.56%) was found between max current density at the oxidation peak and methanol volume, with the limit of detection (LOD) at $9.3~\mu \text{L}$ . Such a sensing method exhibits potential for portability, high accuracy, and generalization in the classification and quantification, ultimately reshaping the realm of VOC analysis in solution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无患子完成签到,获得积分10
刚刚
纯子关注了科研通微信公众号
刚刚
1秒前
Luna完成签到,获得积分10
2秒前
2秒前
3秒前
成就的水桃完成签到,获得积分20
3秒前
SciGPT应助kelly采纳,获得10
3秒前
genhao7完成签到,获得积分10
3秒前
科研小白LR完成签到,获得积分10
4秒前
小王发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
科研通AI5应助zheng采纳,获得10
7秒前
寒雨发布了新的文献求助10
7秒前
华风完成签到,获得积分10
7秒前
轻松安珊完成签到,获得积分10
7秒前
7秒前
丞123发布了新的文献求助10
8秒前
8秒前
科研通AI5应助Little Mianmian采纳,获得20
8秒前
勤恳易真完成签到,获得积分10
9秒前
9秒前
Owen应助明理的洋葱采纳,获得10
9秒前
晚秋北斗完成签到 ,获得积分10
11秒前
刚刚好发布了新的文献求助10
11秒前
11秒前
胡萝卜发布了新的文献求助10
11秒前
zjmm完成签到,获得积分10
13秒前
科研通AI5应助yoyo采纳,获得10
13秒前
舒心的怜翠完成签到 ,获得积分10
14秒前
14秒前
14秒前
隐形雁玉应助风趣幻枫采纳,获得10
15秒前
充电宝应助和和和采纳,获得10
15秒前
DDDD发布了新的文献求助10
16秒前
16秒前
泡面小猪完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790513
求助须知:如何正确求助?哪些是违规求助? 3335220
关于积分的说明 10273834
捐赠科研通 3051689
什么是DOI,文献DOI怎么找? 1674763
邀请新用户注册赠送积分活动 802841
科研通“疑难数据库(出版商)”最低求助积分说明 760907