Radiomics model based on intratumoral and peritumoral features for predicting major pathological response in non-small cell lung cancer receiving neoadjuvant immunochemotherapy

无线电技术 医学 接收机工作特性 肺癌 新辅助治疗 肿瘤科 病态的 内科学 阶段(地层学) 癌症 放射科 乳腺癌 古生物学 生物
作者
Dingpin Huang,Lin Chen,Yangyang Jiang,Enhui Xin,Fangyi Xu,Yi Gan,Rui Xu,Fang Wang,Haiping Zhang,Kaihua Lou,Lei Shi,Hongjie Hu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14 被引量:5
标识
DOI:10.3389/fonc.2024.1348678
摘要

Objective To establish a radiomics model based on intratumoral and peritumoral features extracted from pre-treatment CT to predict the major pathological response (MPR) in patients with non-small cell lung cancer (NSCLC) receiving neoadjuvant immunochemotherapy. Methods A total of 148 NSCLC patients who underwent neoadjuvant immunochemotherapy from two centers (SRRSH and ZCH) were retrospectively included. The SRRSH dataset (n=105) was used as the training and internal validation cohort. Radiomics features of intratumoral (T) and peritumoral regions (P1 = 0-5mm, P2 = 5-10mm, and P3 = 10-15mm) were extracted from pre-treatment CT. Intra- and inter- class correlation coefficients and least absolute shrinkage and selection operator were used to feature selection. Four single ROI models mentioned above and a combined radiomics (CR: T+P1+P2+P3) model were established by using machine learning algorithms. Clinical factors were selected to construct the combined radiomics-clinical (CRC) model, which was validated in the external center ZCH (n=43). The performance of the models was assessed by DeLong test, calibration curve and decision curve analysis. Results Histopathological type was the only independent clinical risk factor. The model CR with eight selected radiomics features demonstrated a good predictive performance in the internal validation (AUC=0.810) and significantly improved than the model T (AUC=0.810 vs 0.619, p<0.05). The model CRC yielded the best predictive capability (AUC=0.814) and obtained satisfactory performance in the independent external test set (AUC=0.768, 95% CI: 0.62-0.91). Conclusion We established a CRC model that incorporates intratumoral and peritumoral features and histopathological type, providing an effective approach for selecting NSCLC patients suitable for neoadjuvant immunochemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的语琴完成签到 ,获得积分10
1秒前
饱满语风发布了新的文献求助10
1秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
聪明的惜芹完成签到,获得积分10
6秒前
麻瓜完成签到,获得积分20
7秒前
7秒前
田様应助要减肥的慕山采纳,获得10
10秒前
11秒前
llc完成签到 ,获得积分10
12秒前
14秒前
科研通AI5应助Dannie采纳,获得20
17秒前
希望天下0贩的0应助湫栗采纳,获得10
17秒前
圆圆发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
啊凡完成签到 ,获得积分10
21秒前
99v587发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
干饭发布了新的文献求助10
24秒前
洛敏夕5743完成签到,获得积分20
26秒前
26秒前
江月年完成签到 ,获得积分10
26秒前
天天快乐应助圆圆采纳,获得10
26秒前
湫栗发布了新的文献求助10
30秒前
花花完成签到 ,获得积分10
31秒前
斯文道之发布了新的文献求助10
31秒前
33秒前
111完成签到,获得积分10
33秒前
喜悦寒凝完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
liumou完成签到,获得积分10
36秒前
杭浩然发布了新的文献求助10
36秒前
科研通AI2S应助干饭采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780043
求助须知:如何正确求助?哪些是违规求助? 3325422
关于积分的说明 10222930
捐赠科研通 3040579
什么是DOI,文献DOI怎么找? 1668903
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758614