Deciphering N-Doped Biochar Design for Non-Radical Pathways through Hierarchical Machine Learning

生物炭 兴奋剂 计算机科学 化学 人工智能 材料科学 有机化学 光电子学 热解
作者
Rupeng Wang,Zixiang He,Honglin Chen,Ke Wang,Shiyu Zhang,Nanqi Ren,Shih‐Hsin Ho
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:4 (7): 1738-1747 被引量:5
标识
DOI:10.1021/acsestengg.4c00093
摘要

Biochar has been widely employed for the promotion of advanced oxidation processes (AOPs) and when combined with nitrogen doping for charge distribution mediation, N-doped biochar (NBC) can serve as a highly effective catalyst for the degradation of persistent organic pollutants. However, due to the variety of doping and preparation methods, the intrinsic active sites for AOP catalysis have not been clearly identified. Furthermore, the complex relationships between preparation method, material properties, and catalytic degradation pathways remain unclear, impeding the widespread practical application of NBC. Herein, machine learning (ML) was implemented to predict the degradation pathway and identify the vital properties of N-doping required for the acceleration of AOPs. During the process of model training, an innovative method of data set splitting was applied, comparing the results generated from multiple models to enhance model interpretability. We elucidated the correlation between the primary features and nonradical pathway, focusing on the contribution of N species and the regulatory role of pyrolysis temperature. Detailed insights were further provided to enhance the ratio design of NBC for nonradical mediation. Overall, this study offers novel insights into NBC-mediated AOPs for pollution control, underscoring the significant potential of ML for accelerating catalyst applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
飘逸善若完成签到,获得积分10
1秒前
Jasper应助02采纳,获得10
1秒前
科研通AI2S应助麦麦采纳,获得10
3秒前
3秒前
4秒前
LUO完成签到,获得积分10
4秒前
Luna发布了新的文献求助10
6秒前
LIU发布了新的文献求助10
6秒前
6秒前
沉沉完成签到 ,获得积分0
7秒前
在水一方应助dhjic采纳,获得10
7秒前
You发布了新的文献求助10
8秒前
9秒前
11秒前
小马甲应助flippedaaa采纳,获得10
12秒前
岳小龙完成签到 ,获得积分10
12秒前
12秒前
刘刘给刘刘的求助进行了留言
13秒前
16秒前
U9A发布了新的文献求助10
17秒前
欧阳铭发布了新的文献求助10
17秒前
17秒前
18秒前
JamesPei应助Espresso采纳,获得10
19秒前
Aom发布了新的文献求助10
19秒前
我的文献呢应助琦琦采纳,获得30
19秒前
笨笨芯发布了新的文献求助10
19秒前
小白完成签到,获得积分10
21秒前
ygwu0946完成签到,获得积分10
21秒前
汉堡包应助花生壳采纳,获得10
22秒前
23秒前
Jiang发布了新的文献求助10
23秒前
庸尘完成签到,获得积分10
25秒前
25秒前
SYLH应助卡戎529采纳,获得10
25秒前
27秒前
幸福猎人1991完成签到,获得积分10
27秒前
胡胡发布了新的文献求助10
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4006085
求助须知:如何正确求助?哪些是违规求助? 3545988
关于积分的说明 11294498
捐赠科研通 3281921
什么是DOI,文献DOI怎么找? 1809820
邀请新用户注册赠送积分活动 885568
科研通“疑难数据库(出版商)”最低求助积分说明 811048