ESVFL: Efficient and secure verifiable federated learning with privacy-preserving

计算机科学 正确性 加密 可验证秘密共享 架空(工程) 云计算 服务器 安全多方计算 信息隐私 计算 分布式计算 计算机网络 计算机安全 密码学 算法 操作系统 集合(抽象数据类型) 程序设计语言
作者
Jiewang Cai,Wenting Shen,Jing Qin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:109: 102420-102420 被引量:8
标识
DOI:10.1016/j.inffus.2024.102420
摘要

Federated learning has been widely applied as a distributed machine learning method in various fields, allowing a global model to be trained by sharing local gradients instead of raw data. However, direct sharing of local gradients still carries the risk of privacy data leakage, and the malicious server might falsify aggregated result to disrupt model updates. To address these issues, a lot of privacy-preserving and verifiable federated learning schemes have been proposed. However, existing schemes suffer from significant computation overhead in either encryption or verification. In this paper, we present ESVFL, an efficient and secure verifiable federated learning scheme with privacy-preserving. This scheme can simultaneously achieve low computation overhead for encryption and verification on the user side. We design an efficient privacy-preserving method to encrypt the users' local gradients. Using this method, the computation and communication overheads of encryption on the user side is independent of the number of users. Users can efficiently verify the correctness of aggregated results returned by the cloud servers using cross-verification. During the verification process, there is no interaction among users and no additional computation is required. Furthermore, we also construct an efficient method to address the issue of user dropout. When some users drop out, online users do not incur any additional computation and communication overheads, while guaranteeing the correctness of the aggregated result of online users' encrypted gradients. The security analysis and the performance evaluation demonstrate that ESVFL is secure and can achieve efficient encryption and verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新田十一郎完成签到,获得积分20
1秒前
蔓越莓奶酥完成签到,获得积分10
2秒前
清风徐来发布了新的文献求助10
2秒前
柠檬水发布了新的文献求助10
3秒前
若晴发布了新的文献求助10
3秒前
2331547774完成签到,获得积分10
5秒前
Dale完成签到,获得积分10
5秒前
我就是来找文献的完成签到,获得积分10
6秒前
花卷发布了新的文献求助10
6秒前
6秒前
李爱国应助YYMM采纳,获得10
7秒前
7秒前
7秒前
8秒前
shea应助成就小懒虫采纳,获得10
8秒前
科研通AI5应助土木研学僧采纳,获得10
10秒前
打打应助梅雨季来信采纳,获得10
10秒前
111111111发布了新的文献求助30
10秒前
SYLH应助敏感的春天采纳,获得10
11秒前
11秒前
执着迎波完成签到,获得积分10
11秒前
领导范儿应助Chang采纳,获得10
12秒前
有魅力的乐双完成签到,获得积分10
12秒前
lwl完成签到,获得积分10
13秒前
宗语雪完成签到,获得积分10
13秒前
13秒前
马文完成签到,获得积分10
13秒前
zhw完成签到,获得积分10
14秒前
14秒前
清风徐来完成签到,获得积分10
15秒前
15秒前
拿铁小笼包完成签到,获得积分10
15秒前
JamesPei应助动人的凤凰采纳,获得10
15秒前
刀锋完成签到,获得积分10
15秒前
16秒前
16秒前
jason93完成签到,获得积分10
17秒前
科研通AI5应助Gsyin采纳,获得10
17秒前
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814903
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399256
捐赠科研通 3076557
什么是DOI,文献DOI怎么找? 1689851
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608