An Integrated Model for Autonomous Speed and Lane Change Decision-Making Based on Deep Reinforcement Learning

强化学习 过程(计算) 贝尔曼方程 动作(物理) 计算机科学 功能(生物学) 图层(电子) 人工智能 工程类 工业工程 模拟 运筹学 数学优化 操作系统 物理 数学 生物 有机化学 化学 进化生物学 量子力学
作者
Jiankun Peng,Siyu Zhang,Yang Zhou,Zhibin Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21848-21860 被引量:39
标识
DOI:10.1109/tits.2022.3185255
摘要

The implementation of autonomous driving is inseparable from developing intelligent driving decision-making models, which are facing high scene complexity, poor decision-making coupling, and the inability to guarantee decision-making safety. This paper starts with the priority and logic of lane change and car-following decision-making, considering driving efficiency, safety, and comfort, then constructs a double-layer decision-making model. This paper uses two deep reinforcement learning algorithms for the upper and lower layers to process large-scale mixed state space and ensure the composite action output of lane-changing decisions and car-following decisions. In the upper layer model, we use the D3QN algorithm to distinguish the potential value of the environment and the value of selecting lane-changing actions when making lane-changing decisions. Different from the traditional mechanisms that only use negative rewards, the lane changing benefit function and dangerous action shielding mechanism are used to eliminate collisions. DDPG algorithm is adopted in the lower layer model to process car-following decisions and output continuous vehicle speed control. Besides, coupled training is taken for the two algorithms to improve the coordination of the double-layer model. This paper selected mixed standard driving cycle conditions to build a highly complex training environment and used NGSIM data to reconstruct scenes to test our model. Simulations in SUMO are presented that the double-layer model can increase the driving speed of the original data by 23.99%, which has higher effectiveness than other models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
will发布了新的文献求助10
1秒前
贾舒涵发布了新的文献求助10
1秒前
万能图书馆应助rio采纳,获得10
3秒前
4秒前
赵毅权发布了新的文献求助10
6秒前
霜降发布了新的文献求助10
6秒前
yangzhang完成签到,获得积分10
6秒前
X10230发布了新的文献求助10
9秒前
9秒前
9秒前
所所应助Xu采纳,获得10
10秒前
Owen应助丽优采纳,获得10
10秒前
酷波er应助哄不好的南采纳,获得10
11秒前
良辰应助susuna1230采纳,获得10
12秒前
林钟完成签到,获得积分10
12秒前
wonderwall发布了新的文献求助10
12秒前
13秒前
小蘑菇应助哈哈哈采纳,获得10
13秒前
wanci应助香飘飘爱你采纳,获得10
14秒前
14秒前
505完成签到,获得积分10
14秒前
14秒前
Xu完成签到,获得积分10
16秒前
FashionBoy应助X10230采纳,获得10
16秒前
17秒前
科研通AI2S应助纯情的莆采纳,获得10
18秒前
小蘑菇应助暴走农民采纳,获得10
18秒前
rio发布了新的文献求助10
18秒前
wwj发布了新的文献求助10
19秒前
机灵柚子应助坚定的采蓝采纳,获得10
19秒前
19秒前
mmmio完成签到,获得积分10
20秒前
NexusExplorer应助烂漫的无剑采纳,获得10
20秒前
20秒前
Xu发布了新的文献求助10
21秒前
合适的荆完成签到,获得积分10
22秒前
rio完成签到,获得积分10
24秒前
26秒前
丽优发布了新的文献求助10
28秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823675
求助须知:如何正确求助?哪些是违规求助? 3366087
关于积分的说明 10438843
捐赠科研通 3085204
什么是DOI,文献DOI怎么找? 1697269
邀请新用户注册赠送积分活动 816302
科研通“疑难数据库(出版商)”最低求助积分说明 769492