Learning low‐dose CT degradation from unpaired data with flow‐based model

人工智能 深度学习 降噪 监督学习 模式识别(心理学) 计算机科学 噪音(视频) 人工神经网络 医学影像学 图像(数学) 机器学习 计算机视觉
作者
Xuan Liu,Xiaokun Liang,Lei Deng,Shan Tan,Yaoqin Xie
出处
期刊:Medical Physics [Wiley]
卷期号:49 (12): 7516-7530 被引量:9
标识
DOI:10.1002/mp.15886
摘要

Abstract Background There has been growing interest in low‐dose computed tomography (LDCT) for reducing the X‐ray radiation to patients. However, LDCT always suffers from complex noise in reconstructed images. Although deep learning‐based methods have shown their strong performance in LDCT denoising, most of them require a large number of paired training data of normal‐dose CT (NDCT) images and LDCT images, which are hard to acquire in the clinic. Lack of paired training data significantly undermines the practicability of supervised deep learning‐based methods. To alleviate this problem, unsupervised or weakly supervised deep learning‐based methods are required. Purpose We aimed to propose a method that achieves LDCT denoising without training pairs. Specifically, we first trained a neural network in a weakly supervised manner to simulate LDCT images from NDCT images. Then, simulated training pairs could be used for supervised deep denoising networks. Methods We proposed a weakly supervised method to learn the degradation of LDCT from unpaired LDCT and NDCT images. Concretely, LDCT and normal‐dose images were fed into one shared flow‐based model and projected to the latent space. Then, the degradation between low‐dose and normal‐dose images was modeled in the latent space. Finally, the model was trained by minimizing the negative log‐likelihood loss with no requirement of paired training data. After training, an NDCT image can be input to the trained flow‐based model to generate the corresponding LDCT image. The simulated image pairs of NDCT and LDCT can be further used to train supervised denoising neural networks for test. Results Our method achieved much better performance on LDCT image simulation compared with the most widely used image‐to‐image translation method, CycleGAN, according to the radial noise power spectrum. The simulated image pairs could be used for any supervised LDCT denoising neural networks. We validated the effectiveness of our generated image pairs on a classic convolutional neural network, REDCNN, and a novel transformer‐based model, TransCT. Our method achieved mean peak signal‐to‐noise ratio (PSNR) of 24.43dB, mean structural similarity (SSIM) of 0.785 on an abdomen CT dataset, mean PSNR of 33.88dB, mean SSIM of 0.797 on a chest CT dataset, which outperformed several traditional CT denoising methods, the same network trained by CycleGAN‐generated data, and a novel transfer learning method. Besides, our method was on par with the supervised networks in terms of visual effects. Conclusion We proposed a flow‐based method to learn LDCT degradation from only unpaired training data. It achieved impressive performance on LDCT synthesis. Next, we could train neural networks with the generated paired data for LDCT denoising. The denoising results are better than traditional and weakly supervised methods, comparable to supervised deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHW完成签到,获得积分10
刚刚
超级念烟完成签到,获得积分10
刚刚
顺利白安完成签到,获得积分10
1秒前
吴宵完成签到,获得积分10
2秒前
爱撒娇的大开完成签到 ,获得积分10
2秒前
3秒前
5秒前
5秒前
二九十二完成签到,获得积分10
7秒前
SYLH应助alexyang采纳,获得10
7秒前
8秒前
严汲完成签到,获得积分10
10秒前
微笑襄完成签到 ,获得积分10
10秒前
医学僧发布了新的文献求助10
10秒前
研友_Zb1rln完成签到,获得积分10
10秒前
大妙妙完成签到 ,获得积分10
11秒前
彭于晏应助zz采纳,获得10
11秒前
苏梗完成签到 ,获得积分10
11秒前
11秒前
星河在眼里完成签到,获得积分10
12秒前
领导范儿应助九Zy采纳,获得10
14秒前
rammy完成签到 ,获得积分10
16秒前
19秒前
Jason完成签到,获得积分10
19秒前
20秒前
20秒前
君临完成签到,获得积分10
20秒前
21秒前
NexusExplorer应助南橘采纳,获得10
21秒前
sfzz完成签到,获得积分10
22秒前
俭朴的听寒完成签到,获得积分10
22秒前
23秒前
虾虾妹儿发布了新的文献求助10
25秒前
猪仔5号完成签到 ,获得积分10
25秒前
权小夏完成签到 ,获得积分10
25秒前
25秒前
Lori完成签到,获得积分10
26秒前
饿哭了塞完成签到 ,获得积分10
26秒前
科研通AI5应助时光轴采纳,获得10
26秒前
海丽完成签到 ,获得积分10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351