Deep Learning-Based Image Retrieval With Unsupervised Double Bit Hashing

计算机科学 散列函数 图像检索 人工智能 二进制代码 模式识别(心理学) 阈值 通用哈希 动态完美哈希 哈希表 局部敏感散列 特征哈希 二进制数 图像(数学) 双重哈希 数学 算术 计算机安全
作者
Jing-Ming Guo,Alim Wicaksono Hari Prayuda,Heri Prasetyo,Sankarasrinivasan Seshathiri
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 7050-7065 被引量:18
标识
DOI:10.1109/tcsvt.2023.3268091
摘要

Unsupervised image hashing is a widely used technique for large-scale image retrieval. This technique maps an image to a finite length of binary codes without extensive human-annotated data for compact storage and effective semantic retrieval. This study proposes a novel deep unsupervised double-bit hashing method for image retrieval. This approach is based on the double-bit hashing method, which has been shown to better preserve the neighboring structure of binary codes than single-bit hashing. Traditional double-bit hashing methods require the entire dataset to be processed simultaneously to determine optimal thresholding values of binary feature encoding. In contrast, the proposed method trains the hashing layer in a minibatch manner, allowing for adaptive threshold learning through a gradient-based optimization strategy. Additionally, unlike most former methods, which only train the hashing networks on top of fixed pre-trained neural networks backbone. The proposed learning framework trains both hashing and backbone networks alternately asynchronously. This strategy enables the model to maximize the learning capability of the hashing and backbone networks. Furthermore, adopting the lightweight Vision Transformer (ViT) in the proposed method allows the model to capture both local and global relationships between multiple image views exemplar, which lead to better generalization, thus maximizing the retrieval performance of the model. Extensive experiments on CIFAR10, NUS-WIDE, and FLICKR25K datasets validate that the proposed method has superior retrieval quality and computational efficiency than state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助CGL采纳,获得10
刚刚
刚刚
ding应助yu采纳,获得10
1秒前
pshhhz1994完成签到,获得积分10
1秒前
Lynn完成签到,获得积分10
1秒前
Eryri完成签到 ,获得积分10
1秒前
1秒前
zhangjiashu发布了新的文献求助10
1秒前
金雪儿发布了新的文献求助30
1秒前
科研通AI2S应助喜悦兔子采纳,获得10
2秒前
勤恳的竹荪完成签到,获得积分10
2秒前
3秒前
魁梧的忆雪完成签到,获得积分10
3秒前
3秒前
超级铅笔发布了新的文献求助10
3秒前
小为发布了新的文献求助20
3秒前
wjx发布了新的文献求助10
3秒前
科研痴发布了新的文献求助10
3秒前
CAE上路到上吊完成签到,获得积分10
3秒前
5秒前
完美世界应助薛华倩采纳,获得10
5秒前
5秒前
饭神仙鱼完成签到,获得积分10
5秒前
烟花应助Huan采纳,获得10
5秒前
eeeeeee发布了新的文献求助10
5秒前
陈杨发布了新的文献求助10
5秒前
诸葛语蝶完成签到,获得积分10
6秒前
7秒前
新手菜鸟发布了新的文献求助10
7秒前
7秒前
涣醒发布了新的文献求助10
8秒前
8秒前
天天快乐应助正爱霜采纳,获得10
8秒前
科研通AI6应助好蓝采纳,获得10
8秒前
Tonald Yang发布了新的文献求助10
8秒前
今后应助谢大喵采纳,获得10
8秒前
9秒前
超级铅笔完成签到,获得积分10
9秒前
英姑应助安蓝采纳,获得10
9秒前
泡面完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261822
求助须知:如何正确求助?哪些是违规求助? 4422960
关于积分的说明 13768092
捐赠科研通 4297447
什么是DOI,文献DOI怎么找? 2357968
邀请新用户注册赠送积分活动 1354348
关于科研通互助平台的介绍 1315454