Tailoring Intergranular Interfaces through Zirconium Solubility‐Controlled Segregation for Optimized LiNiO 2 Cathodes

作者
Baoyu Han,Xinhai Li,Zhiliang Yan,Zhixing Wang,Wenjie Peng,Hui Duan,Guangchao Li,Bichao Wu,Guochun Yan,Xiaobo Zheng,Jiexi Wang
出处
期刊:Small methods [Wiley]
标识
DOI:10.1002/smtd.202501612
摘要

Abstract Structural instability and interfacial degradation pose critical challenges in the design of Ni‐rich layered cathodes for high energy density lithium‐ion batteries. Here, an intergranular interface engineering of LiNi 0.996 Zr 0.004 O 2 (LNO‐Zr) cathode is proposed and realized on a kilogram‐scale by in situ doping, promoting the preferential growth of electrochemically active facets and inducing the segregation of Zr at intergranular interfaces. The incorporation of Zr 4+ into Ni(OH) 2 precursors effectively modulates surface energy, guiding crystal growth toward preferential {010}/{101} facets and promoting the formation of ultrafine primary particles with enhanced Li + pathways. During calcination, a conformal Li 2 ZrO 3 nanolayer forms at intergranular interfaces due to the limited solubility threshold of Zr in the cathode lattice, acting as a grain growth inhibitor to preserve the radially oriented structure. This engineered architecture mitigates lattice strain, suppresses microcrack propagation, and reduces parasitic reactions. Consequently, the LNO‐Zr cathode delivers a high specific capacity of 239.1 mAh g −1 , excellent cycling retention of 78.3% after 200 cycles at 1C, and improved Li + diffusion kinetics with suppressed H2–H3 phase transitions. This work introduces a scalable strategy for intergranular interface engineering of LiNiO 2 cathodes, providing valuable insights into defect chemistry and mechanical stabilization in high‐performance Ni‐rich cathodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南无三完成签到,获得积分10
刚刚
子木发布了新的文献求助10
刚刚
乔达摩悉达多完成签到 ,获得积分10
2秒前
蟪蛄鸪发布了新的文献求助10
2秒前
文静的绯完成签到,获得积分10
2秒前
Demon发布了新的文献求助10
4秒前
Strongly完成签到 ,获得积分10
6秒前
xcx发布了新的文献求助10
6秒前
6秒前
9秒前
pretty完成签到 ,获得积分10
9秒前
Bressanone完成签到,获得积分10
11秒前
斯文败类应助11采纳,获得10
11秒前
阿玖完成签到 ,获得积分10
11秒前
12秒前
暮然完成签到,获得积分10
13秒前
wlscj应助臧佳莹采纳,获得20
13秒前
有热心愿意完成签到,获得积分10
15秒前
SciGPT应助火焰迷踪采纳,获得10
16秒前
17秒前
18秒前
bkagyin应助酷炫的冰淇淋采纳,获得10
20秒前
刘书洋发布了新的文献求助10
21秒前
21完成签到,获得积分10
21秒前
斯文败类应助Doc.Wang采纳,获得10
21秒前
22秒前
22秒前
23秒前
23秒前
25秒前
wu发布了新的文献求助10
28秒前
JUGG发布了新的文献求助10
29秒前
30秒前
FashionBoy应助Annn采纳,获得10
30秒前
臭宝发布了新的文献求助10
33秒前
ysws完成签到,获得积分10
35秒前
值班室禁止学习完成签到,获得积分10
35秒前
36秒前
Demon完成签到,获得积分10
37秒前
聪明的如冬完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312