已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adaptive Modeling of Tandem Mass Spectrometry Data: Creation of the METLIN 960K MRM Database

作者
Aries Aisporna,Bill Webb,Winnie Uritboonthai,Linh Hoang,Elizabeth Billings,Corey Hoang,Robert S. Plumb,Gary Siuzdak
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (44): 24586-24595
标识
DOI:10.1021/acs.analchem.5c04639
摘要

Multiple Reaction Monitoring (MRM) remains the gold standard for quantitative mass spectrometry but continues to be constrained by the limited availability of high-quality transitions and collision energy (CE) values for many biologically and chemically relevant molecules. Here, we present the METLIN 960K MRM library, a 960,000-compound transition resource derived entirely from empirically acquired MS/MS data. MRM transitions were generated in both positive and negative ionization modes using an empirical spline-based pipeline refined by AI BioSync, an XCMS enhancement that provides a framework of AI and machine-learning tools designed to decipher spectral data for biological and analytical relevance. Central to this approach is spline fitting of CE-dependent intensity profiles from experimental MS/MS data collected at four discrete energies (0, 10, 20, and 40 eV), enabling continuous CE modeling and precise prediction of optimal fragmentation conditions. Supervised learning models were used within AI BioSync to refine spline fitting across diverse chemical classes, improving reproducibility and predictive accuracy. Validation across more than 100 authentic compounds, including rare metabolites and diverse small molecules, demonstrated robust detection down to 1 nM, confirming both sensitivity and scalability. This framework also holds immediate applicability for preclinical drug development studies, where authentic metabolite and impurity standards are often unavailable. Unlike prior methods reliant on in silico fragmentation or heuristic rules, all transitions are derived directly from experimental MS/MS data using absolute intensities. The resulting precursor m/z-centric METLIN 960K MRM library (https://metlin.scripps.edu) greatly expands the chemical space accessible to targeted quantitation, providing a scalable, vendor-independent path for sensitive and specific molecular detection across research, clinical, and applied applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sunny发布了新的文献求助10
2秒前
WDD完成签到,获得积分10
2秒前
科研码头完成签到 ,获得积分10
4秒前
小哈发布了新的文献求助10
5秒前
SCI来完成签到 ,获得积分10
5秒前
大胆发布了新的文献求助10
5秒前
5秒前
ss完成签到,获得积分20
6秒前
程琳发布了新的文献求助10
7秒前
SUNTOP完成签到,获得积分10
7秒前
沉默的冬寒完成签到 ,获得积分10
9秒前
10秒前
10秒前
今后应助Zxxxxx采纳,获得10
10秒前
lvzhechen发布了新的文献求助10
12秒前
12秒前
Lucas应助程琳采纳,获得10
12秒前
12秒前
ebby发布了新的文献求助10
15秒前
15秒前
不安靖巧发布了新的文献求助100
16秒前
tl完成签到,获得积分10
17秒前
Persist6578完成签到 ,获得积分10
17秒前
ding应助大胆采纳,获得10
17秒前
汉堡包应助勇敢的心采纳,获得30
18秒前
竹签子应助hxx采纳,获得10
19秒前
19秒前
心信鑫发布了新的文献求助10
21秒前
21秒前
张利双发布了新的文献求助30
21秒前
22秒前
22秒前
xhDoc完成签到,获得积分20
22秒前
24秒前
念安发布了新的文献求助10
25秒前
xhDoc发布了新的文献求助10
26秒前
赘婿应助星星采纳,获得10
26秒前
芙蓉发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469657
求助须知:如何正确求助?哪些是违规求助? 4572650
关于积分的说明 14336604
捐赠科研通 4499505
什么是DOI,文献DOI怎么找? 2465100
邀请新用户注册赠送积分活动 1453653
关于科研通互助平台的介绍 1428141