Toward sustainable culture media: Using artificial intelligence to optimize reduced-serum formulations for cultivated meat

响应面法 人工神经网络 生物技术 生化工程 遗传算法 机器学习 计算机科学 人工智能 工程类 数学 食品科学 生物
作者
Amin Nikkhah,Abbas Rohani,Mohammad Zarei,Ajay Kulkarni,Feras A. Batarseh,Nicole Tichenor Blackstone,Reza Ovissipour
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:894: 164988-164988 被引量:21
标识
DOI:10.1016/j.scitotenv.2023.164988
摘要

When considering options for future foods, cell culture approaches are at the fore, however, culture media to support the process has been identified as a significant contributor to the overall global warming potential (GWP) and cost of cultivated meat production. To address this issue, an artificial intelligence-based approach was applied to simultaneously optimize the GWP, cost, and cell growth rate of a reduced-serum culture media formulation for a zebrafish (ZEM2S cell line) cultivated meat production system. Response surface methodology (RSM) was used to design the experiments, with seven components - IGF, FGF, TGF, PDGF, selenium, ascorbic acid, and serum - selected as independent variables, given their influence on culture media performance. Radial basis function (RBF) neural networks and genetic algorithm (GA) were applied for prediction of dependent variables, and optimization of the culture media formulation, respectively. The results indicated that the developed RBF could accurately predict the GWP, cost and growth rate, with a model efficiency of 0.98. Subsequently, the three developed RBF neural networks predictive models were used as the inputs for a multi-objective genetic algorithm, and the optimal quantities of the independent variables were determined using a multi-objective optimization algorithm. The suggested RSM + RBF + GA framework in this study could be applied to sustainably optimize serum-free media development, identifying the combination of media ingredients that balances yield, environmental impact, and cost for various cultivated meat cell lines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tpkkcdd完成签到,获得积分10
刚刚
万能图书馆应助XXXX采纳,获得10
1秒前
高高完成签到,获得积分10
1秒前
Dante发布了新的文献求助10
1秒前
1秒前
曼曼完成签到,获得积分10
4秒前
5秒前
无奈的萍发布了新的文献求助30
5秒前
grzzz发布了新的文献求助10
5秒前
123完成签到 ,获得积分10
6秒前
Dante完成签到,获得积分10
8秒前
11秒前
相机大喊大叫完成签到,获得积分10
11秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
12秒前
13秒前
XXXX发布了新的文献求助10
15秒前
16秒前
852应助剪影改采纳,获得10
18秒前
18秒前
Wcy发布了新的文献求助10
20秒前
CipherSage应助为念采纳,获得10
20秒前
爱学习发布了新的文献求助10
22秒前
乐怡日尧发布了新的文献求助10
22秒前
Jasper应助Wcy采纳,获得10
25秒前
许金钗完成签到,获得积分10
28秒前
30秒前
酷波er应助乐怡日尧采纳,获得10
32秒前
35秒前
36秒前
hhhhzt发布了新的文献求助10
36秒前
38秒前
脑洞疼应助开放宛儿采纳,获得10
38秒前
YOLO完成签到 ,获得积分10
39秒前
剪影改完成签到,获得积分10
39秒前
汉堡包应助jfz采纳,获得10
39秒前
候默——辛普森完成签到,获得积分20
42秒前
剪影改发布了新的文献求助10
43秒前
大模型应助嘻嘻采纳,获得10
43秒前
CipherSage应助爱学习采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844