Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113059-113059 被引量:19
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ooo完成签到 ,获得积分10
1秒前
2秒前
mouxq发布了新的文献求助10
2秒前
3秒前
4秒前
香蕉觅云应助布丁采纳,获得10
4秒前
4秒前
淡然的妙柏关注了科研通微信公众号
4秒前
mim完成签到,获得积分10
5秒前
6秒前
王旺旺发布了新的文献求助10
7秒前
大个应助酷酷学采纳,获得10
8秒前
JamesPei应助默默洋葱采纳,获得10
8秒前
wckow发布了新的文献求助10
9秒前
9秒前
10秒前
senlin发布了新的文献求助10
11秒前
11秒前
烟花应助甜甜圈采纳,获得10
12秒前
Taozhi发布了新的文献求助30
14秒前
布丁发布了新的文献求助10
16秒前
领导范儿应助刚果逆风采纳,获得10
16秒前
ljz发布了新的文献求助10
16秒前
英姑应助qmdx采纳,获得30
16秒前
17秒前
Orange应助Singularity采纳,获得10
17秒前
weirdo发布了新的文献求助10
18秒前
Sid应助芝士包采纳,获得50
18秒前
19秒前
20秒前
JMH完成签到,获得积分10
21秒前
e001应助wxh1314采纳,获得10
21秒前
22秒前
Yang应助HH采纳,获得10
22秒前
23秒前
峇蘭完成签到,获得积分10
23秒前
able发布了新的文献求助10
24秒前
彭于晏应助Cathy采纳,获得10
24秒前
leo发布了新的文献求助10
24秒前
NexusExplorer应助随遇而安采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916263
求助须知:如何正确求助?哪些是违规求助? 3461779
关于积分的说明 10918925
捐赠科研通 3188596
什么是DOI,文献DOI怎么找? 1762727
邀请新用户注册赠送积分活动 853123
科研通“疑难数据库(出版商)”最低求助积分说明 793649