Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier]
卷期号:171: 113059-113059 被引量:32
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇宙拿铁发布了新的文献求助10
刚刚
刚刚
刚刚
百事可乐发布了新的文献求助10
1秒前
1秒前
1秒前
我是小张发布了新的文献求助10
1秒前
Something发布了新的文献求助10
1秒前
陶醉凝丝发布了新的文献求助10
1秒前
fighting完成签到,获得积分10
2秒前
刘璇发布了新的文献求助10
2秒前
kangkang发布了新的文献求助30
2秒前
悠悠发布了新的文献求助10
3秒前
suodeheng完成签到,获得积分20
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
WANGYUANLE发布了新的文献求助10
4秒前
生动秋蝶发布了新的文献求助10
4秒前
4秒前
美好斓发布了新的文献求助10
4秒前
充电宝应助wwww采纳,获得10
5秒前
科研通AI6应助九九采纳,获得10
5秒前
lym发布了新的文献求助10
5秒前
5秒前
李爱国应助陶醉的灵枫采纳,获得10
5秒前
小二郎应助iron采纳,获得10
5秒前
毛毛发布了新的文献求助10
6秒前
orixero应助清爽的盼曼采纳,获得10
6秒前
7秒前
科研通AI6应助阳光的巧荷采纳,获得10
7秒前
7秒前
充电宝应助喜欢做实验采纳,获得10
7秒前
8秒前
科目三应助王梓磬采纳,获得10
8秒前
zxy完成签到 ,获得积分10
8秒前
热带蚂蚁发布了新的文献求助10
8秒前
Ava应助秀儿采纳,获得10
8秒前
科研通AI6应助亚蛋超可爱采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648073
求助须知:如何正确求助?哪些是违规求助? 4774828
关于积分的说明 15042676
捐赠科研通 4807153
什么是DOI,文献DOI怎么找? 2570560
邀请新用户注册赠送积分活动 1527333
关于科研通互助平台的介绍 1486398