Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113059-113059 被引量:25
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
乐乐乐乐乐乐应助呆呆采纳,获得10
1秒前
DXJ发布了新的文献求助10
1秒前
kong发布了新的文献求助10
2秒前
jason完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
科研通AI2S应助桂花乌龙采纳,获得10
4秒前
5秒前
修仙中应助Bennyz采纳,获得10
5秒前
尤苏福发布了新的文献求助10
5秒前
张雨兴发布了新的文献求助10
5秒前
Seedless发布了新的文献求助10
5秒前
搜集达人应助yan采纳,获得10
6秒前
兴奋大船发布了新的文献求助30
6秒前
英吉利25发布了新的文献求助10
7秒前
缓慢的中蓝完成签到,获得积分10
8秒前
黄橙子发布了新的文献求助10
8秒前
8秒前
loen完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
大气成风完成签到,获得积分10
10秒前
hhh完成签到,获得积分10
10秒前
怕黑雨梅发布了新的文献求助10
11秒前
mitty完成签到 ,获得积分10
11秒前
爆米花应助hahaha123213123采纳,获得10
11秒前
扶手完成签到,获得积分10
12秒前
看风景的小熊完成签到,获得积分10
12秒前
kong完成签到,获得积分10
13秒前
13秒前
枯了完成签到,获得积分10
13秒前
13秒前
13秒前
lorenz发布了新的文献求助30
15秒前
12345发布了新的文献求助10
15秒前
张三完成签到,获得积分10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266