Comparative antioxidant activity and untargeted metabolomic analyses of cherry extracts of two Chinese cherry species based on UPLC-QTOF/MS and machine learning algorithms

代谢组学 抗氧化剂 类黄酮 化学 机器学习 支持向量机 随机森林 肉桂酸 食品科学 人工智能 传统医学 色谱法 生物化学 计算机科学 医学
作者
Ziwei Wang,Lin Zhou,Wenqian Hao,Yu Liu,Xia Xiao,Shan Xiao,Chenning Zhang,Binbin Wei
出处
期刊:Food Research International [Elsevier BV]
卷期号:171: 113059-113059 被引量:19
标识
DOI:10.1016/j.foodres.2023.113059
摘要

P. pseudocerasus and P. tomentosa are the two native Chinese cherry species of high economic and ornamental worths. Little is known about the metabolic information of P. pseudocerasus and P. tomentosa. Effective means are lacking for distinguishing these two similar species. In this study, the differences in total phenolic content (TPC), total flavonoid content (TFC), and in vitro antioxidant activities in 21 batches of two species of cherries were compared. A comparative UPLC-QTOF/MS-based metabolomics coupled with three machine learning algorithms was established for differentiating the cherry species. The results demonstrated that P. tomentosa had higher TPC and TFC with average content differences of 12.07 times and 39.30 times, respectively, and depicted better antioxidant activity. Total of 104 differential compounds were identified by UPLC-QTOF/MS metabolomics. The major differential compounds were flavonoids, organooxygen compounds, and cinnamic acids and derivatives. Correlation analysis revealed differences in flavonoids content such as procyanidin B1 or isomer and (Epi)catechin. They could be responsible for differences in antioxidant activities between the two species. Among three machine learning algorithms, the prediction accuracy of support vector machine (SVM) was 85.7%, and those of random forest (RF) and back propagation neural network (BPNN) were 100%. BPNN exhibited better classification performance and higher prediction rate for all testing set samples than those of RF. The study herein found that P. tomentosa had higher nutritional value and biological functions, and thus considered for usage in health products. Machine models based on untargeted metabolomics can be effective tools for distinguishing these two species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
rong完成签到 ,获得积分10
2秒前
2秒前
算不尽发布了新的文献求助10
2秒前
吗喽大人发布了新的文献求助10
4秒前
5秒前
虾米发布了新的文献求助10
6秒前
11发布了新的文献求助10
7秒前
椿iii完成签到 ,获得积分10
8秒前
10秒前
Andrew完成签到,获得积分10
11秒前
帅气的天磊完成签到,获得积分10
11秒前
13秒前
十二月完成签到,获得积分10
13秒前
含糊完成签到 ,获得积分10
14秒前
夏天的西瓜完成签到,获得积分10
15秒前
zoro发布了新的文献求助10
17秒前
年三月完成签到 ,获得积分10
17秒前
fzhou完成签到 ,获得积分10
17秒前
虾米完成签到,获得积分10
24秒前
曾经的依风完成签到,获得积分10
28秒前
29秒前
义气的访波应助qqshown采纳,获得10
30秒前
petrichor完成签到 ,获得积分10
30秒前
田様应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
爆米花应助科研通管家采纳,获得10
31秒前
pluto应助科研通管家采纳,获得10
31秒前
pluto应助科研通管家采纳,获得10
31秒前
Pakham发布了新的文献求助10
35秒前
37秒前
SciEngineerX完成签到,获得积分10
37秒前
北秋颐发布了新的文献求助10
43秒前
persi完成签到 ,获得积分10
44秒前
又村完成签到 ,获得积分10
45秒前
卷心菜完成签到,获得积分10
48秒前
小v完成签到 ,获得积分10
49秒前
petrichor完成签到 ,获得积分10
50秒前
XiaoBai完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751