Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning

突变 液体活检 表皮生长因子受体 生物标志物 T790米 外体 计算生物学 生物 分子生物学 化学 基因 微泡 受体 癌症 生物化学 遗传学 小RNA 克拉斯
作者
Seungmin Kim,Byeong Hyeon Choi,Hyunku Shin,Kihun Kwon,Sung Yong Lee,Hyun Bin Yoon,Hyun Koo Kim,Yeonho Choi
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:8 (6): 2391-2400 被引量:17
标识
DOI:10.1021/acssensors.3c00681
摘要

Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nathan完成签到,获得积分10
1秒前
烟花应助dejavu采纳,获得10
1秒前
思源应助文艺书芹采纳,获得10
1秒前
猪咪发布了新的文献求助10
2秒前
科研通AI5应助了了采纳,获得30
3秒前
徐冉完成签到,获得积分10
4秒前
吴映波发布了新的文献求助30
4秒前
4秒前
5秒前
曲光彩发布了新的文献求助10
6秒前
一行发布了新的文献求助10
6秒前
芋头完成签到,获得积分10
6秒前
紫曦完成签到,获得积分20
7秒前
bkagyin应助Mp4采纳,获得10
7秒前
8秒前
Nathan发布了新的文献求助10
8秒前
8秒前
starry001发布了新的文献求助10
8秒前
9秒前
Diego发布了新的文献求助10
9秒前
wmhappy完成签到,获得积分10
9秒前
10秒前
隐形曼青应助悦耳的初之采纳,获得10
10秒前
10秒前
CodeCraft应助机灵乐驹采纳,获得10
11秒前
11秒前
独角兽发布了新的文献求助10
11秒前
11秒前
12秒前
大模型应助震动的觅露采纳,获得10
12秒前
12秒前
blue发布了新的文献求助10
12秒前
深情安青应助称心如意采纳,获得10
12秒前
慕青应助nomad采纳,获得30
12秒前
阿珍完成签到,获得积分10
12秒前
12秒前
传奇3应助曲光彩采纳,获得10
13秒前
14秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835772
求助须知:如何正确求助?哪些是违规求助? 3378123
关于积分的说明 10502581
捐赠科研通 3097717
什么是DOI,文献DOI怎么找? 1706000
邀请新用户注册赠送积分活动 820776
科研通“疑难数据库(出版商)”最低求助积分说明 772274