清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Steel surface defect detection and segmentation using deep neural networks

分割 人工智能 人工神经网络 计算机科学 曲面(拓扑) 深层神经网络 模式识别(心理学) 深度学习 地质学 计算机视觉 数学 几何学
作者
Sara Ashrafi Vayghan,Sobhan Teymouri,Sepideh Etaati,Javad Khoramdel,Yasamin Borhani,Esmaeil Najafi
出处
期刊:Results in engineering [Elsevier]
卷期号:25: 103972-103972 被引量:23
标识
DOI:10.1016/j.rineng.2025.103972
摘要

Defect detection is a crucial task in the manufacturing industry, particularly in steel surface inspection. While manual recognition is one of the most reliable techniques, recent advances in computer vision and machine learning have led to the development of automatic defect detection techniques. This paper proposes several deep-learning-based computer vision techniques, including semantic segmentation and object detection models, to detect surface defects on steel sheets. The U-Net, FCN-8, and FPN models are implemented for segmentation, while the YOLOv4 model is used for object detection. Moreover, a combined segmentation and object detection structure, referred to as two-stage defect detection, is developed to enhance the accuracy of detecting small defects. Based on the obtained results, the U-Net model with pre-trained backbones achieves a Dice Similarity Coefficient of 72%, outperforming existing methods. The object detection model with a resolution of 640 reaches the mean average precision of 49.32% and 35.06% for binary class and multi-class detection, respectively. Furthermore, the proposed two-stage defect detection structure achieves a Dice Similarity Coefficient of 84%. In summary, the results validate the efficient performance of the studied techniques for accurate defect detection on steel surfaces.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiongqiong完成签到 ,获得积分10
3秒前
4秒前
思源应助读书的时候采纳,获得10
10秒前
12秒前
21秒前
30秒前
33秒前
35秒前
40秒前
40秒前
45秒前
49秒前
53秒前
研友_ngqgY8发布了新的文献求助20
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
55秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
bigtree完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688338
求助须知:如何正确求助?哪些是违规求助? 5065546
关于积分的说明 15193862
捐赠科研通 4846587
什么是DOI,文献DOI怎么找? 2598958
邀请新用户注册赠送积分活动 1551040
关于科研通互助平台的介绍 1509667